Spaces:
Running
Running
File size: 37,048 Bytes
bfc1cf6 2f3d61a 6439bc9 64d6a1c 56c0514 d29ccbb 6439bc9 64d6a1c 6439bc9 bfc1cf6 2f3d61a 516fc47 9a4b611 516fc47 d29ccbb b56d8f3 389c70e d29ccbb 389c70e d29ccbb 389c70e 543c39f d29ccbb 543c39f d29ccbb 543c39f d29ccbb 543c39f d29ccbb 543c39f 5e14f9b 86bebd0 5e14f9b 6ec21c9 5e14f9b d29ccbb 3646962 add2681 3646962 406c0d6 3646962 406c0d6 3646962 406c0d6 3646962 406c0d6 3646962 406c0d6 3646962 406c0d6 3646962 406c0d6 3646962 406c0d6 3646962 406c0d6 3646962 406c0d6 3646962 406c0d6 3646962 406c0d6 3646962 406c0d6 3646962 406c0d6 3646962 2841710 4a92fe8 2841710 2171ced 2841710 2171ced 2841710 4a92fe8 2171ced 2841710 4a92fe8 2171ced 2841710 63cea89 2841710 9682d40 6439bc9 6b1a461 6e9b3c0 6b1a461 6439bc9 6e9b3c0 6439bc9 9682d40 64d6a1c ac1b43b 4a92fe8 e31e231 4a92fe8 ac1b43b c515f30 ac1b43b c515f30 ac1b43b 6e9b3c0 022800b 1871af1 6439bc9 6e9b3c0 6439bc9 6b1a461 e6857f6 6439bc9 bfc1cf6 2f3d61a 4a92fe8 9682d40 2429022 2f3d61a 6e9b3c0 1871af1 2841710 ac1b43b 22e8e0a d29ccbb 2429022 06bc75d 2429022 ac1b43b 2429022 9eb3a05 2429022 17d180b 2429022 8191966 f2ca1b6 63ad224 c8ed281 d29ccbb acfcd3f f6e4af4 3646962 6439bc9 bfc1cf6 2841710 2a474e7 6b1a461 bfc1cf6 6e9b3c0 bfc1cf6 6439bc9 d04b940 6439bc9 7748dcf 4a59421 bbf54a8 7748dcf bbf54a8 02551fc 4de4b44 02551fc 6439bc9 9814205 6439bc9 64d6a1c 6e9b3c0 9814205 64d6a1c 9814205 64d6a1c fbc3848 9223a59 4a59421 543c39f fab49e1 543c39f 5e14f9b 543c39f 5e14f9b 543c39f d29ccbb 543c39f fab49e1 543c39f 4a59421 8975086 4a59421 5e14f9b 4a59421 5e14f9b bbf54a8 18205a7 02551fc bbf54a8 1c43a53 1816322 bbf54a8 5e14f9b 022800b 5e14f9b 7983613 c047aac 18205a7 bbf54a8 18205a7 5e14f9b bbf54a8 f6e4af4 bbf54a8 f6e4af4 18205a7 f6e4af4 02551fc 7983613 4de4b44 7983613 02551fc 7983613 fbc3848 7983613 6f7bf4c 7983613 fbc3848 7983613 fbc3848 7983613 02551fc f6e4af4 188329d 02551fc dac34cb 02551fc 86bebd0 02551fc 3e6b08c c047aac 3e6b08c 1694377 3e6b08c fe70987 02551fc f6e4af4 02551fc 7983613 91aaf8c 9682d40 6e9b3c0 960c7a3 9682d40 1871af1 6e9b3c0 1871af1 2841710 1871af1 6e9b3c0 1871af1 6e9b3c0 9682d40 6e9b3c0 91aaf8c 9682d40 6e9b3c0 9682d40 6e9b3c0 1871af1 6e9b3c0 1871af1 6b1a461 9682d40 91aaf8c 6439bc9 2f3d61a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 |
import os
import gradio as gr
from anthropic import Anthropic
from datetime import datetime, timedelta
from collections import deque
import random
import logging
import tempfile
from pathlib import Path
from sympy import *
import json
from pathlib import Path
# Set up logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Initialize Anthropic client
anthropic = Anthropic(
api_key=os.environ.get('ANTHROPIC_API_KEY')
)
# Request tracking
MAX_REQUESTS_PER_DAY = 500
request_history = deque(maxlen=1000)
SYMPY_GUIDELINES = """
When writing SymPy code to verify solutions:
NOTE: For eigenvalue problems, use 'lam = Symbol('lam')' instead of importing from sympy.abc
1. Variable Declaration and Expressions:
- ALWAYS create symbolic expressions instead of literal numbers when working with mathematical operations:
```python
# CORRECT:
x = Symbol('x')
expr = x + 1 # Creates a symbolic expression
# INCORRECT:
expr = 1 # This is just a number, can't be differentiated
```
- For polynomials and functions:
```python
# CORRECT:
x = Symbol('x')
p = x**2 + 2*x + 1 # Creates a polynomial expression
# INCORRECT:
p = 1 # This won't work for operations like diff()
```
- When verifying operator actions:
```python
# CORRECT:
x = Symbol('x')
def verify_operator(p):
x = Symbol('x') # Always use Symbol inside functions too
return p.subs(x, 1) # Substitute values after creating expression
# INCORRECT:
def verify_operator(p):
return p # Passing raw numbers won't work
```
- For integration bounds:
```python
# CORRECT:
t = Symbol('t')
expr = t**2
result = integrate(expr, (t, 0, 1))
# INCORRECT:
result = integrate(2, (t, 0, 1)) # Can't integrate a number
```
2. Solving and Computing:
- Never use strings in solve() or other SymPy functions:
CORRECT: solve(eq, x)
INCORRECT: solve(eq, 'x')
- Define equations symbolically:
CORRECT: eq = 2*sqrt(h) - sqrt(12) + 5*k
INCORRECT: eq = 2*sqrt('h') - sqrt(12) + 5*k
3. Printing and Output:
- Include print statements for ALL calculations and results
- Print intermediate steps and final answers
- Print variable values after they are computed
- Use simple print statements instead of f-strings for SymPy expressions
- Print expressions with labels on separate lines:
```python
print("Expression label:")
print(expression)
```
4. Numeric Calculations:
- Use Float() for decimal numbers in calculations
- Use float() for final printing of results
- Avoid evalf() as it may cause errors
- For numeric results:
```python
result = expression.evalf()
print("Result:")
print(float(result))
```
5. Working with Series and Sequences:
- Use Float() for sequence terms
- Convert sums to float() before printing
- For series calculations, print intermediate terms
6. Matrix Operations and Systems of Equations:
- Never use symbolic variables as matrix indices:
```python
# CORRECT:
i, j = 0, 1 # Use integers for indexing
M = Matrix([[1, 2], [3, 4]])
element = M[i, j]
# INCORRECT:
x = Symbol('x')
element = M[x, 0] # This will raise an error
```
- For matrix analysis, always convert equations to Matrix form:
```python
# CORRECT:
A = Matrix([[1, 2], [3, 4]])
eigenvals = A.eigenvals()
# For system of equations:
x, y = symbols('x y')
system = Matrix([[2, 1], [1, -1]])
b = Matrix([5, 1])
solution = system.solve(b)
```
- For matrix operations with variables:
```python
# CORRECT:
x = Symbol('x')
M = Matrix([[x, 1], [2, 3]])
result = M * M # Matrix multiplication
# INCORRECT:
M[Symbol('i'), Symbol('j')] = x # Don't use symbolic indices
```
- For systems of equations that might be linearly dependent, use row reduction instead of matrix inversion. Here's the template for handling such systems:
```python
from sympy import Matrix, symbols, solve
def analyze_system(A, b):
'Analyze a system Ax = b using row reduction. Returns whether solution exists and if it's unique.'
# Augmented matrix [A|b]
aug = Matrix(A.row_join(b))
# Get row echelon form
rref, pivots = aug.rref()
print("Row reduced augmented matrix:")
print(rref)
print("\\nPivot columns:", pivots)
# Get rank of coefficient matrix and augmented matrix
rank_A = Matrix(A).rank()
rank_aug = aug.rank()
print(f"\\nRank of coefficient matrix: {rank_A}")
print(f"Rank of augmented matrix: {rank_aug}")
if rank_aug > rank_A:
print("\\nNo solution exists")
return None
elif rank_A < A.cols:
print("\\nInfinitely many solutions exist")
return "infinite"
else:
print("\\nUnique solution exists")
return "unique"
# When solving a system Ax = b:
A = Matrix([[...], [...], [...]]) # coefficient matrix
b = Matrix([[...], [...], [...]]) # right-hand side
# Analyze system
result = analyze_system(A, b)
if result == "infinite":
# Get parametric form of solution
aug = Matrix(A.row_join(b))
rref, pivots = aug.rref()
# Get free variables
vars = symbols('x y z') # adjust variable names as needed
free_vars = [var for i, var in enumerate(vars) if i not in pivots]
print("\\nParametric solution (t is free parameter):")
for i, var in enumerate(vars):
if i in pivots:
row = pivots.index(i)
expr = rref[row, -1]
for j, free_var in enumerate(free_vars):
expr -= rref[row, pivots[-1] + 1 + j] * free_var
print(f"{var} = {expr}")
else:
print(f"{var} = t") # use different parameter names for multiple free variables
```
Always use this template when working with systems of equations to handle potential linear dependence correctly. """
def load_proof_repository():
"""Load the proof repository from the repository file"""
repo_path = Path("Lebl-theorems-all.json")
try:
with open(repo_path, "r") as f:
return json.load(f)
except Exception as e:
logger.error(f"Error loading proof repository: {str(e)}")
return None
TOPIC_MAPPINGS = {
"integration": ["integral", "integrable", "riemann", "integrate", "antiderivative"],
"continuity": ["continuous", "discontinuous", "discontinuity", "uniformly continuous"],
"sequences": ["sequence", "convergent", "divergent", "monotone", "subsequence"],
"series": ["series", "sum", "convergent series", "power series"],
"differentiation": ["derivative", "differentiable", "differential"],
"limits": ["limit", "cluster point", "accumulation"],
"functions": ["function", "mapping", "surjective", "injective", "bijective"],
"bounded": ["bound", "bounded above", "bounded below", "supremum", "infimum"]
}
def get_related_terms(topic):
"""Get all related terms for a given topic"""
# Get direct mappings
related = TOPIC_MAPPINGS.get(topic.lower(), [])
# Add the original topic
related.append(topic.lower())
# Remove duplicates while preserving order
return list(dict.fromkeys(related))
def matches_topic(text, topic_terms):
"""Check if any topic terms appear in the text"""
text_lower = text.lower()
return any(term in text_lower for term in topic_terms)
def get_relevant_proofs(topic):
"""Get relevant proofs from repository based on topic, randomly selecting examples"""
repository = load_proof_repository()
if not repository:
logger.error("Failed to load proof repository")
return []
logger.debug(f"Searching for proofs related to topic: {topic}")
topic_terms = get_related_terms(topic)
logger.debug(f"Related terms: {topic_terms}")
relevant_proofs = []
for theorem in repository.get("dataset", {}).get("theorems", []):
# Check categories
categories = theorem.get("categories", [])
category_match = any(matches_topic(cat, topic_terms) for cat in categories)
# Check contents
contents = theorem.get("contents", [])
content_match = any(matches_topic(content, topic_terms) for content in contents)
# Check title
title = theorem.get("title", "")
title_match = matches_topic(title, topic_terms)
if (category_match or content_match or title_match):
if theorem.get("contents") and theorem.get("proofs"):
proof_content = {
"title": theorem.get("title", ""),
"contents": theorem.get("contents", []),
"proofs": [p.get("contents", []) for p in theorem.get("proofs", [])]
}
relevant_proofs.append(proof_content)
logger.debug(f"Found matching proof: {proof_content['title']}")
logger.debug(f"Matched via: {'categories' if category_match else 'contents' if content_match else 'title'}")
logger.debug(f"Found {len(relevant_proofs)} relevant proofs before sampling")
# Randomly select 3 proofs if we have more than 3
if len(relevant_proofs) > 3:
selected = random.sample(relevant_proofs, 3)
logger.debug("Selected proofs for enhancement:")
for proof in selected:
logger.debug(f"- {proof['title']}")
return selected
return relevant_proofs
def enhance_prompt_with_proofs(system_prompt, subject, topic):
"""Enhance the system prompt with relevant proofs if subject is Real Analysis"""
if subject != "Real Analysis":
logger.debug("Skipping proof enhancement - not Real Analysis")
return system_prompt
relevant_proofs = get_relevant_proofs(topic)
if not relevant_proofs:
logger.debug(f"No relevant proofs found for topic: {topic}")
return system_prompt
logger.debug(f"Enhancing prompt with {len(relevant_proofs)} proofs")
# Add proof examples to the prompt
proof_examples = "\n\nReference these proof examples for style and approach:\n"
for proof in relevant_proofs:
logger.debug(f"Adding proof: {proof['title']}")
proof_examples += f"\nTheorem: {proof['title']}\n"
proof_examples += "Statement: " + " ".join(proof['contents']) + "\n"
if proof['proofs']:
first_proof = " ".join(proof['proofs'][0])
logger.debug(f"Proof length: {len(first_proof)} characters")
proof_examples += "Proof: " + first_proof + "\n"
# Add specific instructions for using the examples
enhanced_prompt = f"""{system_prompt}
ADDITIONAL PROOF GUIDELINES:
1. Consider the following proof examples from established textbooks
2. Maintain similar level of rigor and detail
3. Use similar proof techniques where applicable
4. Follow similar notation and presentation style
{proof_examples}"""
return enhanced_prompt
def get_difficulty_parameters(difficulty_level):
"""Return specific parameters and constraints based on difficulty level"""
parameters = {
1: { # Very Easy
"description": "suitable for beginners",
"constraints": [
"Use only basic concepts and straightforward calculations",
"Break complex problems into smaller, guided steps",
"Use simple numbers and avoid complex algebraic expressions"
],
"example_style": "Similar to standard homework problems",
"model": "claude-3-5-sonnet-20241022"
},
2: { # Easy
"description": "easy, but requiring some thought",
"constraints": [
"Use basic concepts with minor complications",
"Minimal guidance provided",
"Use moderately complex numbers or expressions"
],
"example_style": "Similar to quiz questions",
"model": "claude-3-5-sonnet-20241022"
},
3: { # Intermediate
"description": "intermediate difficulty, testing deeper understanding",
"constraints": [
"Combine 2-3 related concepts",
"Include some non-obvious solution paths",
"Require multi-step reasoning",
"Use moderate algebraic complexity"
],
"example_style": "Similar to intermediate-difficulty exam questions",
"model": "claude-3-5-sonnet-20241022"
},
4: { # Difficult
"description": "challenging, requiring strong mathematical maturity",
"constraints": [
"Combine multiple concepts creatively",
"Require insight and deep understanding",
"Use sophisticated mathematical reasoning"
],
"example_style": "Similar to challenging exam questions",
"model": "claude-3-5-sonnet-20241022"
},
5: { # Very Difficult
"description": "very challenging, testing mastery and creativity at a graduate level",
"constraints": [
"Create novel applications of theoretical concepts",
"Require graduate-level mathematical reasoning",
"Combine multiple advanced topics in unexpected ways",
"Demand creative problem-solving approaches",
"Include rigorous proof construction",
"Require synthesis across mathematical domains",
"Test deep theoretical understanding"
],
"example_style": "Similar to graduate qualifying exams or advanced competition problems",
"model": "claude-3-5-sonnet-20241022"
}
}
return parameters.get(difficulty_level)
def create_latex_document(content, questions_only=False):
"""Create a complete LaTeX document"""
try:
latex_header = r"""\documentclass{article}
\usepackage{amsmath,amssymb}
\usepackage[margin=1in]{geometry}
\begin{document}
\title{Mathematics Question}
\maketitle
"""
latex_footer = r"\end{document}"
if questions_only:
# Modified to handle single question
processed_content = content.split('Solution:')[0]
content = processed_content
full_document = f"{latex_header}\n{content}\n{latex_footer}"
logger.debug(f"Created {'questions-only' if questions_only else 'full'} LaTeX document")
return full_document
except Exception as e:
logger.error(f"Error creating LaTeX document: {str(e)}")
raise
def save_to_temp_file(content, filename):
"""Save content to a temporary file and return the path"""
try:
temp_dir = Path(tempfile.gettempdir()) / "math_test_files"
temp_dir.mkdir(exist_ok=True)
file_path = temp_dir / filename
file_path.write_text(content, encoding='utf-8')
logger.debug(f"Saved content to temporary file: {file_path}")
return str(file_path)
except Exception as e:
logger.error(f"Error saving temporary file: {str(e)}")
raise
def get_problem_type_addition(question_type):
"""Return specific requirements based on problem type"""
problem_type_additions = {
"application": """
The application question MUST:
- Present a real-world scenario or practical problem
- Require modeling the situation mathematically
- Connect abstract mathematical concepts to concrete situations
- Include realistic context and data
- Require students to:
1. Identify relevant mathematical concepts
2. Translate the practical problem into mathematical terms
3. Solve using appropriate mathematical techniques
4. Interpret the results in the context of the original problem
- Randomly select one of these topic areas with equal probability
* Physics applications (motion, forces, work)
* Engineering scenarios
* Economics problems
* Biological systems
* Business applications
* Social science applications
* Data science applications
""",
"proof": """
The proof question MUST:
- Require a formal mathematical proof
- Focus on demonstrating logical reasoning
- Require justification for each step
- Emphasize theoretical understanding
The proof question MAY NOT:
- Include Real-world applications or scenarios
- Include Pure computation problems
- Ask only for numerical answers
""",
"computation": """
The computation question MUST:
- Require specific algebraic calculations
- Focus on mathematical techniques
- Have concrete answers in the form of algebraic expressions (about half of questions) or numbers (about half of questions)
- Test procedural knowledge
The computation question MAY NOT:
- Include extended real-world applications or scenarios
- Ask for a proof
"""
}
return problem_type_additions.get(question_type, "")
def generate_question(subject, difficulty, question_type):
"""Generate a single math question with additional verification"""
try:
if not os.environ.get('ANTHROPIC_API_KEY'):
logger.error("Anthropic API key not found")
return "Error: Anthropic API key not configured", None, None
logger.debug(f"Generating {question_type} question for subject: {subject} at difficulty level: {difficulty}")
# Check rate limit
now = datetime.now()
while request_history and (now - request_history[0]) > timedelta(days=1):
request_history.popleft()
if len(request_history) >= MAX_REQUESTS_PER_DAY:
return "Daily request limit reached. Please try again tomorrow.", None, None
request_history.append(now)
topics = {
"Single Variable Calculus": ["limits", "derivatives", "integrals", "series", "related rates",
"linear_approximation", "lhopitals rule", "integration techniques","improper integrals","area between curves",
"volumes of revolution","arc length","parametric equations","polar coordinates"],
"Multivariable Calculus": ["partial derivatives", "multiple integrals", "vector fields", "optimization"],
"Linear Algebra": ["matrices", "vector spaces", "eigenvalues", "linear transformations"],
"Differential Equations": ["first order equations", "second order equations", "systems", "stability analysis"],
"Real Analysis": ["sequences", "series", "continuity", "differentiation", "integration"],
"Complex Analysis": ["complex functions", "analyticity", "contour integration", "residues"],
"Abstract Algebra": ["groups", "rings", "fields", "homomorphisms"],
"Probability Theory": ["probability spaces", "random variables", "distributions", "limit theorems"],
"Numerical Analysis": ["approximation", "interpolation", "numerical integration", "error analysis"],
"Topology": ["metric spaces", "continuity", "compactness", "connectedness"]
}
selected_topic = random.choice(topics.get(subject, ["general"]))
logger.debug(f"Selected topic: {selected_topic}")
difficulty_params = get_difficulty_parameters(difficulty)
problem_type_addition = get_problem_type_addition(question_type)
system_prompt = f"""You are an expert mathematics professor creating a {difficulty_params['description']} exam question.
STRICT REQUIREMENTS:
1. Write exactly 1 {question_type} question on {subject} covering {selected_topic} that can be solved analytically without numerical methods.
A question where any part of the solution must resort to numerical methdos is invalid.
2. Difficulty Level Guidelines:
{difficulty_params['description'].upper()}
Follow these specific constraints:
{chr(10).join(f' - {c}' for c in difficulty_params['constraints'])}
{problem_type_addition}
3. Style Reference:
Question should be {difficulty_params['example_style']}
4. For LaTeX formatting:
- Make sure that the question statement uses proper LaTeX math mode
- Use $ for inline math
- Use $$ on separate lines for equations and solutions
- Put each solution step on its own line in $$ $$
- DO NOT use \\begin{{aligned}} or similar environments
- When writing questions involving currency expressed in dollars NEVER use the `$` symbol as it will be interepreted as math mode. ALWAYS write out the word dollars.
* Example: 1000 dollars
5. Include a detailed solution
- If the question involves geometry make sure to identify any general geometric formulas that apply, For example:
* Areas/volumes of common shapes and solids
* Cross-sectional areas of geometric figures
* Arc lengths and sector areas
- When setting up differential equations either in calculus or differential equation applications
* carefully consider the direction of change in variables
* ensure integration bounds align with the physical direction of the process being modeled
- The solution must be analytical. It must not rely on numerical methods.
* NO part of the solution may resort to or be based on numerical analysis.
* The only numerical calculations that should be done are those that could be done on a simple scientific calculator.
* Make sure to simplify completely as far as analytical methods will allow
6. Maintain clear formatting
7. At the end of the solution output, print SymPy code that you would use to solve or verify the main equations in the question
8. Observe the folloiwng SymPy Guidelines
{SYMPY_GUIDELINES}"""
#Consider
#When writing SymPy code:
#- Use FiniteSet(1, 2, 3) instead of Set([1, 2, 3]) for finite sets
#- Import specific functions instead of using 'from sympy import *'
#- Print results of each calculation step
# Enhance the prompt with proof examples if applicable
if subject == "Real Analysis" and question_type == "proof":
system_prompt = enhance_prompt_with_proofs(system_prompt, subject, selected_topic)
logger.debug("Sending request to Anthropic API")
message = anthropic.messages.create(
model=difficulty_params['model'],
max_tokens=4096,
temperature=0.7,
messages=[{
"role": "user",
"content": f"{system_prompt}\n\nWrite a question for {subject}."
}]
)
if not hasattr(message, 'content') or not message.content:
logger.error("No content received from Anthropic API")
return "Error: No content received from API", None, None
response_text = message.content[0].text
logger.debug("Successfully received response from Anthropic API")
# Execute SymPy code and append results
sympy_output = extract_and_run_sympy_code_simple(response_text)
if sympy_output:
# Check if SymPy ran successfully
if "Error" not in sympy_output:
resolution_text, has_discrepancy, revised_solution = check_and_resolve_discrepancy(response_text, sympy_output)
response_text = f"{response_text}\n\nSymPy Verification Results:\n```\n{sympy_output}\n```\n\nVerification Analysis:\n{resolution_text}"
if has_discrepancy and revised_solution:
logger.debug("Performing final verification for dproblem with discrepancy")
final_verification = perform_final_verification(revised_solution)
response_text += "\n\nFinal Expert Verification:\n" + final_verification
# Create LaTeX content
questions_latex = create_latex_document(response_text, questions_only=True)
full_latex = create_latex_document(response_text, questions_only=False)
# Save to temporary files
questions_path = save_to_temp_file(questions_latex, "question.tex")
full_path = save_to_temp_file(full_latex, "full_question.tex")
logger.debug("Successfully created temporary files")
return response_text, questions_path, full_path
except Exception as e:
logger.error(f"Error generating question: {str(e)}")
return f"Error: {str(e)}", None, None
def extract_and_run_sympy_code_simple(response_text):
"""
Extract SymPy code from the response and execute it.
"""
try:
# Extract code
sympy_start = response_text.find('```python')
if sympy_start == -1:
return "No SymPy code found in the response."
code_start = response_text.find('\n', sympy_start) + 1
code_end = response_text.find('```', code_start)
if code_end == -1:
return "Malformed SymPy code block."
sympy_code = response_text[code_start:code_end].strip()
# Import SymPy at the module level
import sympy
# Create globals dict with all SymPy functions
globals_dict = {}
globals_dict.update(vars(sympy))
globals_dict.update({
'print': print,
'float': float,
'Symbol': sympy.Symbol,
'symbols': sympy.symbols,
'solve': sympy.solve,
'sqrt': sympy.sqrt,
'pi': sympy.pi,
'diff': sympy.diff,
'integrate': sympy.integrate,
'simplify': sympy.simplify,
'Matrix': sympy.Matrix
})
# Remove the sympy import line from the code if present
lines = sympy_code.split('\n')
filtered_lines = [line for line in lines if not line.strip().startswith('from sympy import') and not line.strip().startswith('import sympy')]
modified_code = '\n'.join(filtered_lines)
# Capture output
import io
from contextlib import redirect_stdout
output_buffer = io.StringIO()
with redirect_stdout(output_buffer):
exec(modified_code, globals_dict)
return output_buffer.getvalue().strip() or "No output produced"
except Exception as e:
return f"Error executing SymPy code: {str(e)}"
def check_and_resolve_discrepancy(initial_response, sympy_output):
"""
Compare the SymPy output with the initial response and resolve any discrepancies.
Returns tuple of (resolution_text, has_discrepancy, revised_solution)
"""
has_discrepancy = False #Initialize
resolution_text = ""
revised_solution = None
try:
resolution_prompt = f"""Here is a mathematics question with two answers.
The first, called Original solution, is a complete solution.
The second, called SymPy Verification, will only provide the final answer.
If the SymPy Verification answer is consistent with the final answer Original solution,
then please say that they are consistent and briefly explain why.
Note that you may use numerical analysis to check whether the two answers are consistent,
and it may be the case that the two answers evaluate to the same expression or number.
If the two answers are inconsistent with each other then please:
1. Identify which solution is correct
2. Explain the error in the incorrect solution
3. Write "Here is the revised complete solution:" and then write out the ENTIRE solution from beginning
to end, including all parts that were correct and the corrections for any incorrect parts.
Do not refer to the original solution or say things like "the rest remains the same" - write
out everything in full.
Original solution:
{initial_response}
SymPy Verification Results:
{sympy_output}
Please maintain the same LaTeX formatting as the original solution."""
# Make API call for resolution
message = anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=4096,
temperature=0.2,
messages=[{
"role": "user",
"content": resolution_prompt
}]
)
resolution_text = message.content[0].text
# Check if resolution contains new SymPy code
if "```python" in resolution_text:
new_sympy_output = extract_and_run_sympy_code_simple(resolution_text)
resolution_text += "\n\nNew SymPy Verification Results:\n```\n" + new_sympy_output + "\n```"
# Determine if there was a discrepancy that required a revised solution
# Check for any indication of inconsistency or error
inconsistency_phrases = [
"inconsistent", "inconsistency", "incorrect", "error", "wrong",
"discrepancy", "mistaken", "mistake"
]
has_discrepancy = any(phrase in resolution_text.lower() for phrase in inconsistency_phrases)
# Look for the required marker phrase and extract the solution after it
marker = "Here is the revised complete solution:"
revised_solution = None
if has_discrepancy:
# Split at the marker
if marker in resolution_text:
parts = resolution_text.split(marker, maxsplit=1)
if len(parts) > 1:
revised_solution = parts[1].strip()
# If the solution seems too short (might be partial), don't accept it
if len(revised_solution) < 100: # Rough minimum length for a complete solution
revised_solution = None
# If we didn't find a complete solution, force a recheck
if not revised_solution:
logger.debug("Initial solution extraction failed, requesting a complete solution")
# Make a new API call specifically requesting a complete solution
complete_solution_prompt = f"""The previous solution had inconsistencies. Please provide a complete solution
from beginning to end. Start your response with exactly this phrase:
"Here is the revised complete solution:"
Then write out the entire solution, including all parts both correct and corrected.
Do not refer to the original solution or say any parts remain the same.
Original problem and verification results:
{initial_response}
SymPy Results:
{sympy_output}"""
try:
message = anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=4096,
temperature=0.2,
messages=[{"role": "user", "content": complete_solution_prompt}]
)
new_response = message.content[0].text
if marker in new_response:
parts = new_response.split(marker, maxsplit=1)
if len(parts) > 1:
revised_solution = parts[1].strip()
except Exception as e:
logger.error(f"Error in solution recheck: {str(e)}")
return resolution_text, has_discrepancy, revised_solution
except Exception as e:
logger.error(f"Error in discrepancy resolution: {str(e)}")
resolution_text = f"Error in resolution: {str(e)}"
has_discrepancy = False # Explicitly set in error case
revised_solution = None
return resolution_text, has_discrepancy, revised_solution
def perform_final_verification(revised_solution):
"""
Perform a final verification of the revised solution.
"""
verification_prompt = f"""As an expert mathematician, please carefully verify this revised solution to an advanced mathematics problem.
Revised Solution to Verify:
{revised_solution}
Please follow these steps exactly:
1. First, analyze the solution for:
- Mathematical correctness
- Missing cases or assumptions
- Completeness and rigor
- Necessary conditions and edge cases
- Any subtle errors or oversights
2. Write exactly this phrase to begin your analysis:
"Here is the complete verified solution:"
3. Then write out the ENTIRE solution from beginning to end, including:
- All correct parts from the original solution
- All needed corrections
- All additional cases and verifications
- Any missing steps or assumptions
- Any necessary additional proofs or derivations
Your complete solution must:
- Be completely self-contained
- Not refer to the original solution
- Show every step of the calculation
- Include all necessary verifications
- Maintain proper LaTeX formatting with $ for inline math and $ on separate lines
- When referring to the dollar as a currency, never use the `$` symbol but rather write out the word dollar
Remember to write out the complete solution even if you only need to add a few steps - the goal is to have a single, complete, verified solution that includes everything necessary for full mathematical rigor.
At the end if you have a different solution than the Revised Solution you verified, explain exactly why."""
try:
# Make API call for final verification
message = anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=4096,
temperature=0.2,
messages=[{
"role": "user",
"content": verification_prompt
}]
)
verification_result = message.content[0].text
# If verification includes new SymPy code, run it
if "```python" in verification_result:
new_sympy_output = extract_and_run_sympy_code_simple(verification_result)
verification_result += "\n\nFinal SymPy Verification:\n```\n" + new_sympy_output + "\n```"
return verification_result
except Exception as e:
logger.error(f"Error in final verification: {str(e)}")
return f"Error in final verification: {str(e)}"
# Create Gradio interface
with gr.Blocks() as interface:
gr.Markdown("# Advanced Mathematics Question Generator")
gr.Markdown("""Generates a unique university-level mathematics question with solution using Claude 3.
Each question features different topics and difficulty levels. Limited to 500 requests per day.""")
with gr.Row():
with gr.Column():
subject_dropdown = gr.Dropdown(
choices=[
"Single Variable Calculus",
"Multivariable Calculus",
"Linear Algebra",
"Differential Equations",
"Real Analysis",
"Complex Analysis",
"Abstract Algebra",
"Probability Theory",
"Numerical Analysis",
"Topology"
],
label="Select Mathematics Subject",
info="Choose a subject for the question"
)
difficulty_slider = gr.Slider(
minimum=1,
maximum=5,
step=1,
value=3,
label="Difficulty Level",
info="1: Very Easy, 2: Easy, 3: Moderate, 4: Difficult, 5: Very Difficult"
)
question_type = gr.Radio(
choices=["computation", "proof", "application"],
label="Question Type",
info="Select the type of question you want",
value="computation"
)
generate_btn = gr.Button("Generate Question")
output_text = gr.Markdown(
label="Generated Question Preview",
latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False}
]
)
with gr.Row():
questions_file = gr.File(label="Question Only (LaTeX)")
full_file = gr.File(label="Question with Solution (LaTeX)")
generate_btn.click(
generate_question,
inputs=[
subject_dropdown,
difficulty_slider,
question_type
],
outputs=[output_text, questions_file, full_file]
)
if __name__ == "__main__":
logger.info("Starting application")
interface.launch() |