joshuarauh commited on
Commit
86bebd0
·
verified ·
1 Parent(s): 389c70e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -4
app.py CHANGED
@@ -108,8 +108,42 @@ When writing SymPy code to verify solutions:
108
  - For series calculations, print intermediate terms
109
 
110
  6. Matrix Operations and Systems of Equations:
111
- - For systems of equations that might be linearly dependent, use row reduction instead of matrix inversion
112
- - Here's the template for handling such systems:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
  ```python
115
  from sympy import Matrix, symbols, solve
@@ -170,7 +204,6 @@ if result == "infinite":
170
  else:
171
  print(f"{var} = t") # use different parameter names for multiple free variables
172
  ```
173
-
174
  Always use this template when working with systems of equations to handle potential linear dependence correctly. """
175
 
176
  def load_proof_repository():
@@ -733,7 +766,7 @@ def perform_final_verification(revised_solution):
733
  """
734
  Perform a final verification of the revised solution for difficulty level 5 problems.
735
  """
736
- verification_prompt = f"""As an expert mathematician, please carefully verify this revised solution to an advanced (graduate-level) mathematics problem.
737
 
738
  Revised Solution to Verify:
739
  {revised_solution}
 
108
  - For series calculations, print intermediate terms
109
 
110
  6. Matrix Operations and Systems of Equations:
111
+ - Never use symbolic variables as matrix indices:
112
+ ```python
113
+ # CORRECT:
114
+ i, j = 0, 1 # Use integers for indexing
115
+ M = Matrix([[1, 2], [3, 4]])
116
+ element = M[i, j]
117
+
118
+ # INCORRECT:
119
+ x = Symbol('x')
120
+ element = M[x, 0] # This will raise an error
121
+ ```
122
+
123
+ - For matrix analysis, always convert equations to Matrix form:
124
+ ```python
125
+ # CORRECT:
126
+ A = Matrix([[1, 2], [3, 4]])
127
+ eigenvals = A.eigenvals()
128
+
129
+ # For system of equations:
130
+ x, y = symbols('x y')
131
+ system = Matrix([[2, 1], [1, -1]])
132
+ b = Matrix([5, 1])
133
+ solution = system.solve(b)
134
+ ```
135
+
136
+ - For matrix operations with variables:
137
+ ```python
138
+ # CORRECT:
139
+ x = Symbol('x')
140
+ M = Matrix([[x, 1], [2, 3]])
141
+ result = M * M # Matrix multiplication
142
+
143
+ # INCORRECT:
144
+ M[Symbol('i'), Symbol('j')] = x # Don't use symbolic indices
145
+ ```
146
+ - For systems of equations that might be linearly dependent, use row reduction instead of matrix inversion. Here's the template for handling such systems:
147
 
148
  ```python
149
  from sympy import Matrix, symbols, solve
 
204
  else:
205
  print(f"{var} = t") # use different parameter names for multiple free variables
206
  ```
 
207
  Always use this template when working with systems of equations to handle potential linear dependence correctly. """
208
 
209
  def load_proof_repository():
 
766
  """
767
  Perform a final verification of the revised solution for difficulty level 5 problems.
768
  """
769
+ verification_prompt = f"""As an expert mathematician, please carefully verify this revised solution to an advanced mathematics problem.
770
 
771
  Revised Solution to Verify:
772
  {revised_solution}