|
|
|
"""
|
|
[Martinez-Gil2024] Augmenting the Interpretability of GraphCodeBERT for Code Similarity Tasks, arXiv preprint arXiv:2410.05275, 2024
|
|
|
|
@author: Jorge Martinez-Gil
|
|
"""
|
|
|
|
import os
|
|
from transformers import RobertaTokenizer, RobertaModel
|
|
from sklearn.decomposition import PCA
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import itertools
|
|
|
|
|
|
tokenizer = RobertaTokenizer.from_pretrained("microsoft/graphcodebert-base")
|
|
model = RobertaModel.from_pretrained("microsoft/graphcodebert-base")
|
|
|
|
|
|
sorting_algorithms = {
|
|
"Bubble_Sort": """
|
|
def bubble_sort(arr):
|
|
n = len(arr)
|
|
for i in range(n):
|
|
for j in range(0, n-i-1):
|
|
if arr[j] > arr[j+1]:
|
|
arr[j], arr[j+1] = arr[j+1], arr[j]
|
|
return arr
|
|
""",
|
|
|
|
"Selection_Sort": """
|
|
def selection_sort(arr):
|
|
for i in range(len(arr)):
|
|
min_idx = i
|
|
for j in range(i+1, len(arr)):
|
|
if arr[j] < arr[min_idx]:
|
|
min_idx = j
|
|
arr[i], arr[min_idx] = arr[min_idx], arr[i]
|
|
return arr
|
|
""",
|
|
|
|
"Insertion_Sort": """
|
|
def insertion_sort(arr):
|
|
for i in range(1, len(arr)):
|
|
key = arr[i]
|
|
j = i-1
|
|
while j >=0 and key < arr[j]:
|
|
arr[j + 1] = arr[j]
|
|
j -= 1
|
|
arr[j + 1] = key
|
|
return arr
|
|
""",
|
|
|
|
"Merge_Sort": """
|
|
def merge_sort(arr):
|
|
if len(arr) > 1:
|
|
mid = len(arr)//2
|
|
L = arr[:mid]
|
|
R = arr[mid:]
|
|
|
|
merge_sort(L)
|
|
merge_sort(R)
|
|
|
|
i = j = k = 0
|
|
|
|
while i < len(L) and j < len(R):
|
|
if L[i] < R[j]:
|
|
arr[k] = L[i]
|
|
i += 1
|
|
else:
|
|
arr[k] = R[j]
|
|
j += 1
|
|
k += 1
|
|
|
|
while i < len(L):
|
|
arr[k] = L[i]
|
|
i += 1
|
|
k += 1
|
|
|
|
while j < len(R):
|
|
arr[k] = R[j]
|
|
j += 1
|
|
k += 1
|
|
return arr
|
|
""",
|
|
|
|
"Quick_Sort": """
|
|
def partition(arr, low, high):
|
|
i = (low-1)
|
|
pivot = arr[high]
|
|
|
|
for j in range(low, high):
|
|
if arr[j] <= pivot:
|
|
i = i+1
|
|
arr[i], arr[j] = arr[j], arr[i]
|
|
arr[i+1], arr[high] = arr[high], arr[i+1]
|
|
return (i+1)
|
|
|
|
def quick_sort(arr, low, high):
|
|
if low < high:
|
|
pi = partition(arr, low, high)
|
|
quick_sort(arr, low, pi-1)
|
|
quick_sort(arr, pi+1, high)
|
|
return arr
|
|
"""
|
|
}
|
|
|
|
|
|
def get_token_embeddings(code):
|
|
inputs = tokenizer(code, return_tensors="pt", max_length=512, truncation=True, padding=True)
|
|
outputs = model(**inputs)
|
|
token_embeddings = outputs.last_hidden_state.squeeze().detach().numpy()
|
|
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'].squeeze())
|
|
return token_embeddings, tokens
|
|
|
|
|
|
output_dir = "pca_pairwise_comparisons"
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
|
|
|
|
algorithm_pairs = list(itertools.combinations(sorting_algorithms.keys(), 2))
|
|
|
|
|
|
for (algo1_name, algo2_name) in algorithm_pairs:
|
|
algo1_code = sorting_algorithms[algo1_name]
|
|
algo2_code = sorting_algorithms[algo2_name]
|
|
|
|
|
|
algo1_embeddings, algo1_tokens = get_token_embeddings(algo1_code)
|
|
algo2_embeddings, algo2_tokens = get_token_embeddings(algo2_code)
|
|
|
|
|
|
all_embeddings = np.concatenate((algo1_embeddings, algo2_embeddings), axis=0)
|
|
|
|
|
|
pca = PCA(n_components=2)
|
|
embeddings_2d = pca.fit_transform(all_embeddings)
|
|
|
|
|
|
plt.figure(figsize=(10, 8), dpi=300)
|
|
|
|
|
|
plt.scatter(embeddings_2d[:len(algo1_tokens), 0],
|
|
embeddings_2d[:len(algo1_tokens), 1],
|
|
color='red', s=50, label=algo1_name, alpha=0.8)
|
|
|
|
|
|
plt.scatter(embeddings_2d[len(algo1_tokens):, 0],
|
|
embeddings_2d[len(algo1_tokens):, 1],
|
|
color='blue', s=50, label=algo2_name, alpha=0.8)
|
|
|
|
|
|
plt.xticks([])
|
|
plt.yticks([])
|
|
plt.xlabel('')
|
|
plt.ylabel('')
|
|
plt.grid(False)
|
|
plt.legend()
|
|
|
|
|
|
output_file = os.path.join(output_dir, f"{algo1_name}_vs_{algo2_name}_tokens_2d_pca.png")
|
|
plt.savefig(output_file, format='png', dpi=300, bbox_inches='tight')
|
|
|
|
|
|
plt.close()
|
|
|
|
print("All pairwise comparison images have been generated.")
|
|
|
|
|
|
import gradio as gr
|
|
from io import BytesIO
|
|
from PIL import Image
|
|
|
|
def compare_algorithms(algo1_name, algo2_name):
|
|
algo1_code = sorting_algorithms[algo1_name]
|
|
algo2_code = sorting_algorithms[algo2_name]
|
|
|
|
|
|
algo1_embeddings, algo1_tokens = get_token_embeddings(algo1_code)
|
|
algo2_embeddings, algo2_tokens = get_token_embeddings(algo2_code)
|
|
|
|
|
|
all_embeddings = np.concatenate((algo1_embeddings, algo2_embeddings), axis=0)
|
|
pca = PCA(n_components=2)
|
|
embeddings_2d = pca.fit_transform(all_embeddings)
|
|
|
|
|
|
plt.figure(figsize=(6, 5), dpi=150)
|
|
plt.scatter(embeddings_2d[:len(algo1_tokens), 0], embeddings_2d[:len(algo1_tokens), 1], color='red', s=20, label=algo1_name)
|
|
plt.scatter(embeddings_2d[len(algo1_tokens):, 0], embeddings_2d[len(algo1_tokens):, 1], color='blue', s=20, label=algo2_name)
|
|
plt.xticks([]); plt.yticks([]); plt.grid(False); plt.legend()
|
|
|
|
|
|
buf = BytesIO()
|
|
plt.savefig(buf, format='png', bbox_inches='tight')
|
|
plt.close()
|
|
buf.seek(0)
|
|
return Image.open(buf)
|
|
|
|
interface = gr.Interface(
|
|
fn=compare_algorithms,
|
|
inputs=[
|
|
gr.Dropdown(choices=list(sorting_algorithms.keys()), label="Algorithm 1"),
|
|
gr.Dropdown(choices=list(sorting_algorithms.keys()), label="Algorithm 2")
|
|
],
|
|
outputs=gr.Image(type="pil", label="Token PCA Plot"),
|
|
title="Code Similarity Visualization with GraphCodeBERT"
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
interface.launch()
|
|
|