File size: 6,489 Bytes
32898cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# -*- coding: utf-8 -*-
"""

[Martinez-Gil2024] Augmenting the Interpretability of GraphCodeBERT for Code Similarity Tasks, arXiv preprint arXiv:2410.05275, 2024



@author: Jorge Martinez-Gil

"""

import os
from transformers import RobertaTokenizer, RobertaModel
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import numpy as np
import itertools

# Initialize GraphCodeBERT
tokenizer = RobertaTokenizer.from_pretrained("microsoft/graphcodebert-base")
model = RobertaModel.from_pretrained("microsoft/graphcodebert-base")

# Define the classical sorting algorithms
sorting_algorithms = {
    "Bubble_Sort": """

def bubble_sort(arr):

    n = len(arr)

    for i in range(n):

        for j in range(0, n-i-1):

            if arr[j] > arr[j+1]:

                arr[j], arr[j+1] = arr[j+1], arr[j]

    return arr

    """,

    "Selection_Sort": """

def selection_sort(arr):

    for i in range(len(arr)):

        min_idx = i

        for j in range(i+1, len(arr)):

            if arr[j] < arr[min_idx]:

                min_idx = j

        arr[i], arr[min_idx] = arr[min_idx], arr[i]

    return arr

    """,

    "Insertion_Sort": """

def insertion_sort(arr):

    for i in range(1, len(arr)):

        key = arr[i]

        j = i-1

        while j >=0 and key < arr[j]:

            arr[j + 1] = arr[j]

            j -= 1

        arr[j + 1] = key

    return arr

    """,

    "Merge_Sort": """

def merge_sort(arr):

    if len(arr) > 1:

        mid = len(arr)//2

        L = arr[:mid]

        R = arr[mid:]



        merge_sort(L)

        merge_sort(R)



        i = j = k = 0



        while i < len(L) and j < len(R):

            if L[i] < R[j]:

                arr[k] = L[i]

                i += 1

            else:

                arr[k] = R[j]

                j += 1

            k += 1



        while i < len(L):

            arr[k] = L[i]

            i += 1

            k += 1



        while j < len(R):

            arr[k] = R[j]

            j += 1

            k += 1

    return arr

    """,

    "Quick_Sort": """

def partition(arr, low, high):

    i = (low-1)

    pivot = arr[high]



    for j in range(low, high):

        if arr[j] <= pivot:

            i = i+1

            arr[i], arr[j] = arr[j], arr[i]

    arr[i+1], arr[high] = arr[high], arr[i+1]

    return (i+1)



def quick_sort(arr, low, high):

    if low < high:

        pi = partition(arr, low, high)

        quick_sort(arr, low, pi-1)

        quick_sort(arr, pi+1, high)

    return arr

    """
}

# Function to get token embeddings for a code snippet
def get_token_embeddings(code):
    inputs = tokenizer(code, return_tensors="pt", max_length=512, truncation=True, padding=True)
    outputs = model(**inputs)
    token_embeddings = outputs.last_hidden_state.squeeze().detach().numpy()
    tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'].squeeze())
    return token_embeddings, tokens

# Directory to save images
output_dir = "pca_pairwise_comparisons"
os.makedirs(output_dir, exist_ok=True)

# Generate all possible pairs of sorting algorithms
algorithm_pairs = list(itertools.combinations(sorting_algorithms.keys(), 2))

# Loop over each pair and generate the visualizations
for (algo1_name, algo2_name) in algorithm_pairs:
    algo1_code = sorting_algorithms[algo1_name]
    algo2_code = sorting_algorithms[algo2_name]
    
    # Get token embeddings for both algorithms
    algo1_embeddings, algo1_tokens = get_token_embeddings(algo1_code)
    algo2_embeddings, algo2_tokens = get_token_embeddings(algo2_code)
    
    # Combine embeddings
    all_embeddings = np.concatenate((algo1_embeddings, algo2_embeddings), axis=0)
    
    # Reduce dimensionality to 2D using PCA
    pca = PCA(n_components=2)
    embeddings_2d = pca.fit_transform(all_embeddings)
    
    # Plotting the token embeddings in 2D
    plt.figure(figsize=(10, 8), dpi=300)

    # Scatter plot for the first algorithm tokens
    plt.scatter(embeddings_2d[:len(algo1_tokens), 0],
                embeddings_2d[:len(algo1_tokens), 1],
                color='red', s=50, label=algo1_name, alpha=0.8)

    # Scatter plot for the second algorithm tokens
    plt.scatter(embeddings_2d[len(algo1_tokens):, 0],
                embeddings_2d[len(algo1_tokens):, 1],
                color='blue', s=50, label=algo2_name, alpha=0.8)

    # Make the visualization more professional
    plt.xticks([])
    plt.yticks([])
    plt.xlabel('')
    plt.ylabel('')
    plt.grid(False)
    plt.legend()

    # Save the figure as a high-quality PNG file
    output_file = os.path.join(output_dir, f"{algo1_name}_vs_{algo2_name}_tokens_2d_pca.png")
    plt.savefig(output_file, format='png', dpi=300, bbox_inches='tight')

    # Show the plot
    plt.close()

print("All pairwise comparison images have been generated.")


import gradio as gr
from io import BytesIO
from PIL import Image

def compare_algorithms(algo1_name, algo2_name):
    algo1_code = sorting_algorithms[algo1_name]
    algo2_code = sorting_algorithms[algo2_name]

    # Get token embeddings
    algo1_embeddings, algo1_tokens = get_token_embeddings(algo1_code)
    algo2_embeddings, algo2_tokens = get_token_embeddings(algo2_code)

    # Combine and reduce
    all_embeddings = np.concatenate((algo1_embeddings, algo2_embeddings), axis=0)
    pca = PCA(n_components=2)
    embeddings_2d = pca.fit_transform(all_embeddings)

    # Plot
    plt.figure(figsize=(6, 5), dpi=150)
    plt.scatter(embeddings_2d[:len(algo1_tokens), 0], embeddings_2d[:len(algo1_tokens), 1], color='red', s=20, label=algo1_name)
    plt.scatter(embeddings_2d[len(algo1_tokens):, 0], embeddings_2d[len(algo1_tokens):, 1], color='blue', s=20, label=algo2_name)
    plt.xticks([]); plt.yticks([]); plt.grid(False); plt.legend()
    
    # Save to BytesIO
    buf = BytesIO()
    plt.savefig(buf, format='png', bbox_inches='tight')
    plt.close()
    buf.seek(0)
    return Image.open(buf)

interface = gr.Interface(
    fn=compare_algorithms,
    inputs=[
        gr.Dropdown(choices=list(sorting_algorithms.keys()), label="Algorithm 1"),
        gr.Dropdown(choices=list(sorting_algorithms.keys()), label="Algorithm 2")
    ],
    outputs=gr.Image(type="pil", label="Token PCA Plot"),
    title="Code Similarity Visualization with GraphCodeBERT"
)

if __name__ == "__main__":
    interface.launch()