Upload 2 files
Browse files- app.py +211 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
[Martinez-Gil2024] Augmenting the Interpretability of GraphCodeBERT for Code Similarity Tasks, arXiv preprint arXiv:2410.05275, 2024
|
4 |
+
|
5 |
+
@author: Jorge Martinez-Gil
|
6 |
+
"""
|
7 |
+
|
8 |
+
import os
|
9 |
+
from transformers import RobertaTokenizer, RobertaModel
|
10 |
+
from sklearn.decomposition import PCA
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
import numpy as np
|
13 |
+
import itertools
|
14 |
+
|
15 |
+
# Initialize GraphCodeBERT
|
16 |
+
tokenizer = RobertaTokenizer.from_pretrained("microsoft/graphcodebert-base")
|
17 |
+
model = RobertaModel.from_pretrained("microsoft/graphcodebert-base")
|
18 |
+
|
19 |
+
# Define the classical sorting algorithms
|
20 |
+
sorting_algorithms = {
|
21 |
+
"Bubble_Sort": """
|
22 |
+
def bubble_sort(arr):
|
23 |
+
n = len(arr)
|
24 |
+
for i in range(n):
|
25 |
+
for j in range(0, n-i-1):
|
26 |
+
if arr[j] > arr[j+1]:
|
27 |
+
arr[j], arr[j+1] = arr[j+1], arr[j]
|
28 |
+
return arr
|
29 |
+
""",
|
30 |
+
|
31 |
+
"Selection_Sort": """
|
32 |
+
def selection_sort(arr):
|
33 |
+
for i in range(len(arr)):
|
34 |
+
min_idx = i
|
35 |
+
for j in range(i+1, len(arr)):
|
36 |
+
if arr[j] < arr[min_idx]:
|
37 |
+
min_idx = j
|
38 |
+
arr[i], arr[min_idx] = arr[min_idx], arr[i]
|
39 |
+
return arr
|
40 |
+
""",
|
41 |
+
|
42 |
+
"Insertion_Sort": """
|
43 |
+
def insertion_sort(arr):
|
44 |
+
for i in range(1, len(arr)):
|
45 |
+
key = arr[i]
|
46 |
+
j = i-1
|
47 |
+
while j >=0 and key < arr[j]:
|
48 |
+
arr[j + 1] = arr[j]
|
49 |
+
j -= 1
|
50 |
+
arr[j + 1] = key
|
51 |
+
return arr
|
52 |
+
""",
|
53 |
+
|
54 |
+
"Merge_Sort": """
|
55 |
+
def merge_sort(arr):
|
56 |
+
if len(arr) > 1:
|
57 |
+
mid = len(arr)//2
|
58 |
+
L = arr[:mid]
|
59 |
+
R = arr[mid:]
|
60 |
+
|
61 |
+
merge_sort(L)
|
62 |
+
merge_sort(R)
|
63 |
+
|
64 |
+
i = j = k = 0
|
65 |
+
|
66 |
+
while i < len(L) and j < len(R):
|
67 |
+
if L[i] < R[j]:
|
68 |
+
arr[k] = L[i]
|
69 |
+
i += 1
|
70 |
+
else:
|
71 |
+
arr[k] = R[j]
|
72 |
+
j += 1
|
73 |
+
k += 1
|
74 |
+
|
75 |
+
while i < len(L):
|
76 |
+
arr[k] = L[i]
|
77 |
+
i += 1
|
78 |
+
k += 1
|
79 |
+
|
80 |
+
while j < len(R):
|
81 |
+
arr[k] = R[j]
|
82 |
+
j += 1
|
83 |
+
k += 1
|
84 |
+
return arr
|
85 |
+
""",
|
86 |
+
|
87 |
+
"Quick_Sort": """
|
88 |
+
def partition(arr, low, high):
|
89 |
+
i = (low-1)
|
90 |
+
pivot = arr[high]
|
91 |
+
|
92 |
+
for j in range(low, high):
|
93 |
+
if arr[j] <= pivot:
|
94 |
+
i = i+1
|
95 |
+
arr[i], arr[j] = arr[j], arr[i]
|
96 |
+
arr[i+1], arr[high] = arr[high], arr[i+1]
|
97 |
+
return (i+1)
|
98 |
+
|
99 |
+
def quick_sort(arr, low, high):
|
100 |
+
if low < high:
|
101 |
+
pi = partition(arr, low, high)
|
102 |
+
quick_sort(arr, low, pi-1)
|
103 |
+
quick_sort(arr, pi+1, high)
|
104 |
+
return arr
|
105 |
+
"""
|
106 |
+
}
|
107 |
+
|
108 |
+
# Function to get token embeddings for a code snippet
|
109 |
+
def get_token_embeddings(code):
|
110 |
+
inputs = tokenizer(code, return_tensors="pt", max_length=512, truncation=True, padding=True)
|
111 |
+
outputs = model(**inputs)
|
112 |
+
token_embeddings = outputs.last_hidden_state.squeeze().detach().numpy()
|
113 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'].squeeze())
|
114 |
+
return token_embeddings, tokens
|
115 |
+
|
116 |
+
# Directory to save images
|
117 |
+
output_dir = "pca_pairwise_comparisons"
|
118 |
+
os.makedirs(output_dir, exist_ok=True)
|
119 |
+
|
120 |
+
# Generate all possible pairs of sorting algorithms
|
121 |
+
algorithm_pairs = list(itertools.combinations(sorting_algorithms.keys(), 2))
|
122 |
+
|
123 |
+
# Loop over each pair and generate the visualizations
|
124 |
+
for (algo1_name, algo2_name) in algorithm_pairs:
|
125 |
+
algo1_code = sorting_algorithms[algo1_name]
|
126 |
+
algo2_code = sorting_algorithms[algo2_name]
|
127 |
+
|
128 |
+
# Get token embeddings for both algorithms
|
129 |
+
algo1_embeddings, algo1_tokens = get_token_embeddings(algo1_code)
|
130 |
+
algo2_embeddings, algo2_tokens = get_token_embeddings(algo2_code)
|
131 |
+
|
132 |
+
# Combine embeddings
|
133 |
+
all_embeddings = np.concatenate((algo1_embeddings, algo2_embeddings), axis=0)
|
134 |
+
|
135 |
+
# Reduce dimensionality to 2D using PCA
|
136 |
+
pca = PCA(n_components=2)
|
137 |
+
embeddings_2d = pca.fit_transform(all_embeddings)
|
138 |
+
|
139 |
+
# Plotting the token embeddings in 2D
|
140 |
+
plt.figure(figsize=(10, 8), dpi=300)
|
141 |
+
|
142 |
+
# Scatter plot for the first algorithm tokens
|
143 |
+
plt.scatter(embeddings_2d[:len(algo1_tokens), 0],
|
144 |
+
embeddings_2d[:len(algo1_tokens), 1],
|
145 |
+
color='red', s=50, label=algo1_name, alpha=0.8)
|
146 |
+
|
147 |
+
# Scatter plot for the second algorithm tokens
|
148 |
+
plt.scatter(embeddings_2d[len(algo1_tokens):, 0],
|
149 |
+
embeddings_2d[len(algo1_tokens):, 1],
|
150 |
+
color='blue', s=50, label=algo2_name, alpha=0.8)
|
151 |
+
|
152 |
+
# Make the visualization more professional
|
153 |
+
plt.xticks([])
|
154 |
+
plt.yticks([])
|
155 |
+
plt.xlabel('')
|
156 |
+
plt.ylabel('')
|
157 |
+
plt.grid(False)
|
158 |
+
plt.legend()
|
159 |
+
|
160 |
+
# Save the figure as a high-quality PNG file
|
161 |
+
output_file = os.path.join(output_dir, f"{algo1_name}_vs_{algo2_name}_tokens_2d_pca.png")
|
162 |
+
plt.savefig(output_file, format='png', dpi=300, bbox_inches='tight')
|
163 |
+
|
164 |
+
# Show the plot
|
165 |
+
plt.close()
|
166 |
+
|
167 |
+
print("All pairwise comparison images have been generated.")
|
168 |
+
|
169 |
+
|
170 |
+
import gradio as gr
|
171 |
+
from io import BytesIO
|
172 |
+
from PIL import Image
|
173 |
+
|
174 |
+
def compare_algorithms(algo1_name, algo2_name):
|
175 |
+
algo1_code = sorting_algorithms[algo1_name]
|
176 |
+
algo2_code = sorting_algorithms[algo2_name]
|
177 |
+
|
178 |
+
# Get token embeddings
|
179 |
+
algo1_embeddings, algo1_tokens = get_token_embeddings(algo1_code)
|
180 |
+
algo2_embeddings, algo2_tokens = get_token_embeddings(algo2_code)
|
181 |
+
|
182 |
+
# Combine and reduce
|
183 |
+
all_embeddings = np.concatenate((algo1_embeddings, algo2_embeddings), axis=0)
|
184 |
+
pca = PCA(n_components=2)
|
185 |
+
embeddings_2d = pca.fit_transform(all_embeddings)
|
186 |
+
|
187 |
+
# Plot
|
188 |
+
plt.figure(figsize=(6, 5), dpi=150)
|
189 |
+
plt.scatter(embeddings_2d[:len(algo1_tokens), 0], embeddings_2d[:len(algo1_tokens), 1], color='red', s=20, label=algo1_name)
|
190 |
+
plt.scatter(embeddings_2d[len(algo1_tokens):, 0], embeddings_2d[len(algo1_tokens):, 1], color='blue', s=20, label=algo2_name)
|
191 |
+
plt.xticks([]); plt.yticks([]); plt.grid(False); plt.legend()
|
192 |
+
|
193 |
+
# Save to BytesIO
|
194 |
+
buf = BytesIO()
|
195 |
+
plt.savefig(buf, format='png', bbox_inches='tight')
|
196 |
+
plt.close()
|
197 |
+
buf.seek(0)
|
198 |
+
return Image.open(buf)
|
199 |
+
|
200 |
+
interface = gr.Interface(
|
201 |
+
fn=compare_algorithms,
|
202 |
+
inputs=[
|
203 |
+
gr.Dropdown(choices=list(sorting_algorithms.keys()), label="Algorithm 1"),
|
204 |
+
gr.Dropdown(choices=list(sorting_algorithms.keys()), label="Algorithm 2")
|
205 |
+
],
|
206 |
+
outputs=gr.Image(type="pil", label="Token PCA Plot"),
|
207 |
+
title="Code Similarity Visualization with GraphCodeBERT"
|
208 |
+
)
|
209 |
+
|
210 |
+
if __name__ == "__main__":
|
211 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
scikit-learn
|
4 |
+
numpy
|
5 |
+
matplotlib
|
6 |
+
gradio
|
7 |
+
Pillow
|