joaogante's picture
joaogante HF Staff
Update app.py
ef2fef1 verified
raw
history blame
3.57 kB
import spaces
from threading import Thread
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import time
model_id = "facebook/opt-1.3b"
assistant_id = "facebook/opt-125m"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
assistant_model = AutoModelForCausalLM.from_pretrained(assistant_id, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
@spaces.GPU
def run_generation(user_text, use_assistant, temperature, max_new_tokens):
if temperature < 0.1:
do_sample = False
else:
do_sample = True
# Get the model and tokenizer, and tokenize the user text.
model_inputs = tokenizer([user_text], return_tensors="pt").to(model.device)
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
assistant_model=assistant_model if use_assistant else None,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
top_p=0.95,
temperature=float(temperature),
top_k=50,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
start = time.time()
t.start()
# Pull the generated text from the streamer, and update the model output. Return the model output and time
# spent so far.
model_output = ""
for new_text in streamer:
model_output += new_text
yield [model_output, round(time.time() - start, 3)]
return [model_output, round(time.time() - start, 3)]
def reset_textbox():
return gr.update(value='')
with gr.Blocks() as demo:
gr.Markdown(
"# 🤗 Assisted Generation Demo\n"
f"- Model: {model_id} (BF16, ~3GB)\n"
f"- Assistant Model: {assistant_id} (BF16, ~0.3GB)\n"
"- Running on a T4 GPU\n"
"- Best results are obtained when the model size difference in parameters is >10x"
)
with gr.Row():
with gr.Column(scale=4):
user_text = gr.Textbox(
placeholder="A sequence: one, two, three, ",
label="Prompt"
)
model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
button_submit = gr.Button(value="Submit")
with gr.Column(scale=1, min_width=200):
gr.Markdown("### Generation Settings")
use_assistant = gr.Checkbox(label="Use Assisted Generation", value=True)
max_new_tokens = gr.Slider(
minimum=1, maximum=500, value=100, step=1, interactive=True, label="Max New Tokens",
)
temperature = gr.Slider(
minimum=0.0, maximum=2.0, value=0.0, step=0.1, interactive=True, label="Temperature (0.0 = Greedy)",
)
gr.Markdown("### Generation time (seconds)")
generation_time = gr.Textbox(lines=1, interactive=False, show_label=False)
generate_inputs = [user_text, use_assistant, temperature, max_new_tokens]
generate_outputs = [model_output, generation_time]
user_text.submit(run_generation, generate_inputs, generate_outputs)
button_submit.click(run_generation, generate_inputs, generate_outputs)
demo.queue(max_size=32).launch()