Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,11 +6,11 @@ import gradio as gr
|
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
7 |
import time
|
8 |
|
9 |
-
model_id = "
|
10 |
-
assistant_id = "
|
11 |
|
12 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto"
|
13 |
-
assistant_model = AutoModelForCausalLM.from_pretrained(assistant_id, torch_dtype=torch.bfloat16, device_map="auto"
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
15 |
|
16 |
@spaces.GPU
|
@@ -56,9 +56,9 @@ def reset_textbox():
|
|
56 |
with gr.Blocks() as demo:
|
57 |
gr.Markdown(
|
58 |
"# 🤗 Assisted Generation Demo\n"
|
59 |
-
f"- Model: {model_id} (
|
60 |
-
f"- Assistant Model: {assistant_id} (BF16, ~
|
61 |
-
"- Running on a T4 GPU"
|
62 |
"- Best results are obtained when the model size difference in parameters is >10x"
|
63 |
)
|
64 |
|
|
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
7 |
import time
|
8 |
|
9 |
+
model_id = "facebook/opt-1.3b"
|
10 |
+
assistant_id = "facebook/opt-125m"
|
11 |
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
|
13 |
+
assistant_model = AutoModelForCausalLM.from_pretrained(assistant_id, torch_dtype=torch.bfloat16, device_map="auto")
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
15 |
|
16 |
@spaces.GPU
|
|
|
56 |
with gr.Blocks() as demo:
|
57 |
gr.Markdown(
|
58 |
"# 🤗 Assisted Generation Demo\n"
|
59 |
+
f"- Model: {model_id} (BF16, ~3GB)\n"
|
60 |
+
f"- Assistant Model: {assistant_id} (BF16, ~0.3GB)\n"
|
61 |
+
"- Running on a T4 GPU\n"
|
62 |
"- Best results are obtained when the model size difference in parameters is >10x"
|
63 |
)
|
64 |
|