File size: 3,571 Bytes
4b1483e
a1a543e
 
 
 
a97bf6b
f7f857f
a1a543e
ef2fef1
 
a1a543e
ef2fef1
 
a1a543e
 
4b1483e
f7f857f
7bb9775
c3cbdc6
 
 
 
a1a543e
ef976dc
a1a543e
 
 
 
 
 
c3cbdc6
a1a543e
 
c3cbdc6
f7f857f
a1a543e
f7f857f
a1a543e
 
f7f857f
a1a543e
 
f7f857f
 
a1a543e
 
 
f7f857f
 
a1a543e
 
 
 
 
 
 
 
588b2d4
ef2fef1
 
 
dc996a6
a1a543e
 
 
336d41b
 
 
 
 
 
 
 
 
f7f857f
 
a1a543e
f7f857f
a1a543e
 
c3cbdc6
a1a543e
f7f857f
 
a1a543e
f7f857f
 
 
 
a1a543e
68ac19e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import spaces
from threading import Thread

import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import time

model_id = "facebook/opt-1.3b"
assistant_id = "facebook/opt-125m"

model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
assistant_model = AutoModelForCausalLM.from_pretrained(assistant_id, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)

@spaces.GPU
def run_generation(user_text, use_assistant, temperature, max_new_tokens):
    if temperature < 0.1:
        do_sample = False
    else:
        do_sample = True

    # Get the model and tokenizer, and tokenize the user text.
    model_inputs = tokenizer([user_text], return_tensors="pt").to(model.device)

    # Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
    # in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
    streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        model_inputs,
        assistant_model=assistant_model if use_assistant else None,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=do_sample,
        top_p=0.95,
        temperature=float(temperature),
        top_k=50,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    start = time.time()
    t.start()

    # Pull the generated text from the streamer, and update the model output. Return the model output and time
    # spent so far.
    model_output = ""
    for new_text in streamer:
        model_output += new_text
        yield [model_output, round(time.time() - start, 3)]
    return [model_output, round(time.time() - start, 3)]


def reset_textbox():
    return gr.update(value='')


with gr.Blocks() as demo:
    gr.Markdown(
        "# 🤗 Assisted Generation Demo\n"
        f"- Model: {model_id} (BF16, ~3GB)\n"
        f"- Assistant Model: {assistant_id} (BF16, ~0.3GB)\n"
        "- Running on a T4 GPU\n"
        "- Best results are obtained when the model size difference in parameters is >10x"
    )

    with gr.Row():
        with gr.Column(scale=4):
            user_text = gr.Textbox(
                placeholder="A sequence: one, two, three, ",
                label="Prompt"
            )
            model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
            button_submit = gr.Button(value="Submit")

        with gr.Column(scale=1, min_width=200):
            gr.Markdown("### Generation Settings")
            use_assistant = gr.Checkbox(label="Use Assisted Generation", value=True)
            max_new_tokens = gr.Slider(
                minimum=1, maximum=500, value=100, step=1, interactive=True, label="Max New Tokens",
            )
            temperature = gr.Slider(
                minimum=0.0, maximum=2.0, value=0.0, step=0.1, interactive=True, label="Temperature (0.0 = Greedy)",
            )
            gr.Markdown("### Generation time (seconds)")
            generation_time = gr.Textbox(lines=1, interactive=False, show_label=False)

    generate_inputs = [user_text, use_assistant, temperature, max_new_tokens]
    generate_outputs = [model_output, generation_time]
    user_text.submit(run_generation, generate_inputs, generate_outputs)
    button_submit.click(run_generation, generate_inputs, generate_outputs)

    demo.queue(max_size=32).launch()