John6666's picture
Upload 351 files
e84842d verified
raw
history blame
20.3 kB
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/facebookresearch/TimeSformer
"""
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Copyright 2020 Ross Wightman
# Modified Model definition
import logging
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils
import torch.utils.checkpoint
from einops import rearrange
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
from .helpers import load_pretrained, load_pretrained_imagenet, load_pretrained_kinetics
from .vit_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
DropPath,
to_2tuple,
trunc_normal_,
)
def _cfg(url="", **kwargs):
return {
"url": url,
"num_classes": 1000,
"input_size": (3, 224, 224),
"pool_size": None,
"crop_pct": 0.9,
"interpolation": "bicubic",
"mean": IMAGENET_DEFAULT_MEAN,
"std": IMAGENET_DEFAULT_STD,
"first_conv": "patch_embed.proj",
"classifier": "head",
**kwargs,
}
default_cfgs = {
"vit_base_patch16_224": _cfg(
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth",
mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5),
),
}
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
with_qkv=True,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.with_qkv = with_qkv
if self.with_qkv:
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.attn_drop = nn.Dropout(attn_drop)
def forward(self, x):
B, N, C = x.shape
if self.with_qkv:
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv[0], qkv[1], qkv[2]
else:
qkv = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(
0, 2, 1, 3
)
q, k, v = qkv, qkv, qkv
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
if self.with_qkv:
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
layer_num,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.1,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
attention_type="divided_space_time",
use_grad_checkpointing=False,
):
super().__init__()
self.attention_type = attention_type
assert attention_type in [
"divided_space_time",
"space_only",
"joint_space_time",
]
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
# Temporal Attention Parameters
if self.attention_type == "divided_space_time":
self.temporal_norm1 = norm_layer(dim)
self.temporal_attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
self.temporal_fc = nn.Linear(dim, dim)
# drop path
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
# [dxli]
self.layer_num = layer_num
self.use_grad_checkpointing = use_grad_checkpointing
if use_grad_checkpointing:
self.temporal_attn = checkpoint_wrapper(self.temporal_attn)
self.attn = checkpoint_wrapper(self.attn)
self.mlp = checkpoint_wrapper(self.mlp)
def forward(self, x, B, T, W):
num_spatial_tokens = (x.size(1) - 1) // T
H = num_spatial_tokens // W
if self.attention_type in ["space_only", "joint_space_time"]:
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
elif self.attention_type == "divided_space_time":
# Temporal
xt = x[:, 1:, :]
xt = rearrange(xt, "b (h w t) m -> (b h w) t m", b=B, h=H, w=W, t=T)
temporal_attn_out = self.temporal_attn(self.temporal_norm1(xt))
res_temporal = self.drop_path(temporal_attn_out)
res_temporal = rearrange(
res_temporal, "(b h w) t m -> b (h w t) m", b=B, h=H, w=W, t=T
)
res_temporal = self.temporal_fc(res_temporal)
xt = x[:, 1:, :] + res_temporal
# Spatial
init_cls_token = x[:, 0, :].unsqueeze(1)
cls_token = init_cls_token.repeat(1, T, 1)
cls_token = rearrange(cls_token, "b t m -> (b t) m", b=B, t=T).unsqueeze(1)
xs = xt
xs = rearrange(xs, "b (h w t) m -> (b t) (h w) m", b=B, h=H, w=W, t=T)
xs = torch.cat((cls_token, xs), 1)
spatial_attn_out = self.attn(self.norm1(xs))
res_spatial = self.drop_path(spatial_attn_out)
# Taking care of CLS token
cls_token = res_spatial[:, 0, :]
cls_token = rearrange(cls_token, "(b t) m -> b t m", b=B, t=T)
# averaging for every frame
cls_token = torch.mean(cls_token, 1, True)
res_spatial = res_spatial[:, 1:, :]
res_spatial = rearrange(
res_spatial, "(b t) (h w) m -> b (h w t) m", b=B, h=H, w=W, t=T
)
res = res_spatial
x = xt
# Mlp
x = torch.cat((init_cls_token, x), 1) + torch.cat((cls_token, res), 1)
x_res = x
x = self.norm2(x)
# x = x + self.drop_path(self.mlp(self.norm2(x)))
# MLP
mlp_out = self.mlp(x)
x = x_res + self.drop_path(mlp_out)
return x
class PatchEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
)
def forward(self, x):
B, C, T, H, W = x.shape
x = rearrange(x, "b c t h w -> (b t) c h w")
x = self.proj(x)
W = x.size(-1)
x = x.flatten(2).transpose(1, 2)
return x, T, W
class VisionTransformer(nn.Module):
"""Vision Transformere"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.1,
hybrid_backbone=None,
norm_layer=nn.LayerNorm,
num_frames=8,
attention_type="divided_space_time",
dropout=0.0,
use_grad_checkpointing=False,
ckpt_layer=0,
):
super().__init__()
self.attention_type = attention_type
self.depth = depth
self.dropout = nn.Dropout(dropout)
self.num_classes = num_classes
# num_features for consistency with other models
self.num_features = self.embed_dim = embed_dim
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
# Positional Embeddings
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
if self.attention_type != "space_only":
self.time_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim))
self.time_drop = nn.Dropout(p=drop_rate)
# Attention Blocks
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, self.depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
Block(
layer_num=i,
use_grad_checkpointing=(
use_grad_checkpointing and i >= self.depth - ckpt_layer
),
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
attention_type=self.attention_type,
)
for i in range(self.depth)
]
)
self.norm = norm_layer(embed_dim)
# Classifier head
self.head = (
nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
)
trunc_normal_(self.pos_embed, std=0.02)
trunc_normal_(self.cls_token, std=0.02)
self.apply(self._init_weights)
# initialization of temporal attention weights
if self.attention_type == "divided_space_time":
i = 0
for m in self.blocks.modules():
m_str = str(m)
if "Block" in m_str:
if i > 0:
nn.init.constant_(m.temporal_fc.weight, 0)
nn.init.constant_(m.temporal_fc.bias, 0)
i += 1
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token", "time_embed"}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=""):
self.num_classes = num_classes
self.head = (
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
)
def remove_classifier(self):
self.num_classes = 0
self.head = None
def forward_features(self, x):
B = x.shape[0]
x, T, W = self.patch_embed(x)
cls_tokens = self.cls_token.expand(x.size(0), -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# resizing the positional embeddings in case they don't match the input at inference
if x.size(1) != self.pos_embed.size(1):
pos_embed = self.pos_embed
cls_pos_embed = pos_embed[0, 0, :].unsqueeze(0).unsqueeze(1)
other_pos_embed = pos_embed[0, 1:, :].unsqueeze(0).transpose(1, 2)
P = int(other_pos_embed.size(2) ** 0.5)
H = x.size(1) // W
other_pos_embed = other_pos_embed.reshape(1, x.size(2), P, P)
new_pos_embed = F.interpolate(other_pos_embed, size=(H, W), mode="nearest")
new_pos_embed = new_pos_embed.flatten(2)
new_pos_embed = new_pos_embed.transpose(1, 2)
new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1)
x = x + new_pos_embed
else:
x = x + self.pos_embed
x = self.pos_drop(x)
# Time Embeddings
if self.attention_type != "space_only":
cls_tokens = x[:B, 0, :].unsqueeze(1)
x = x[:, 1:]
x = rearrange(x, "(b t) n m -> (b n) t m", b=B, t=T)
# Resizing time embeddings in case they don't match
if T != self.time_embed.size(1):
time_embed = self.time_embed.transpose(1, 2)
new_time_embed = F.interpolate(time_embed, size=(T), mode="nearest")
new_time_embed = new_time_embed.transpose(1, 2)
x = x + new_time_embed
else:
x = x + self.time_embed
x = self.time_drop(x)
x = rearrange(x, "(b n) t m -> b (n t) m", b=B, t=T)
x = torch.cat((cls_tokens, x), dim=1)
# Attention blocks
for blk in self.blocks:
x = blk(x, B, T, W)
# Predictions for space-only baseline
if self.attention_type == "space_only":
x = rearrange(x, "(b t) n m -> b t n m", b=B, t=T)
x = torch.mean(x, 1) # averaging predictions for every frame
x = self.norm(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _conv_filter(state_dict, patch_size=16):
"""convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if "patch_embed.proj.weight" in k:
if v.shape[-1] != patch_size:
patch_size = v.shape[-1]
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
class vit_base_patch16_224(nn.Module):
def __init__(self, cfg, **kwargs):
super(vit_base_patch16_224, self).__init__()
self.pretrained = True
patch_size = 16
self.model = VisionTransformer(
img_size=cfg.DATA.TRAIN_CROP_SIZE,
num_classes=cfg.MODEL.NUM_CLASSES,
patch_size=patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.1,
num_frames=cfg.DATA.NUM_FRAMES,
attention_type=cfg.TIMESFORMER.ATTENTION_TYPE,
**kwargs,
)
self.attention_type = cfg.TIMESFORMER.ATTENTION_TYPE
self.model.default_cfg = default_cfgs["vit_base_patch16_224"]
self.num_patches = (cfg.DATA.TRAIN_CROP_SIZE // patch_size) * (
cfg.DATA.TRAIN_CROP_SIZE // patch_size
)
pretrained_model = cfg.TIMESFORMER.PRETRAINED_MODEL
if self.pretrained:
load_pretrained(
self.model,
num_classes=self.model.num_classes,
in_chans=kwargs.get("in_chans", 3),
filter_fn=_conv_filter,
img_size=cfg.DATA.TRAIN_CROP_SIZE,
num_patches=self.num_patches,
attention_type=self.attention_type,
pretrained_model=pretrained_model,
)
def forward(self, x):
x = self.model(x)
return x
class TimeSformer(nn.Module):
def __init__(
self,
image_size=224,
patch_size=16,
n_frms=8,
attn_drop_rate=0.0,
drop_path_rate=0.1,
drop_rate=0,
use_grad_ckpt=False,
ckpt_layer=0,
remove_classifier=True,
**kwargs,
):
super(TimeSformer, self).__init__()
self.img_size = image_size
self.patch_size = patch_size
self.num_frames = n_frms
self.attn_drop_rate = attn_drop_rate
self.drop_path_rate = drop_path_rate
self.drop_rate = drop_rate
self.use_grad_ckpt = use_grad_ckpt
self.ckpt_layer = ckpt_layer
self.attention_type = "divided_space_time"
logging.info(
f"Initializing TimeSformer with img_size={self.img_size}, patch_size={self.patch_size}, num_frames={self.num_frames}"
)
# will be ignored when loading official pretrained ckpt
self.num_classes = 400
self.model = VisionTransformer(
img_size=self.img_size,
num_classes=self.num_classes,
patch_size=self.patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
drop_rate=self.drop_rate,
attn_drop_rate=self.attn_drop_rate,
drop_path_rate=self.drop_path_rate,
num_frames=self.num_frames,
attention_type=self.attention_type,
use_grad_checkpointing=self.use_grad_ckpt,
ckpt_layer=self.ckpt_layer,
**kwargs,
)
if remove_classifier:
self.model.remove_classifier()
self.model.default_cfg = default_cfgs[
"vit_base_patch" + str(self.patch_size) + "_224"
]
self.num_patches = (self.img_size // self.patch_size) * (
self.img_size // self.patch_size
)
def forward(self, x):
x = self.model(x)
return x
def forward_features(self, x):
# b, c, t, h, w = x.shape
x = self.model.forward_features(x)
## apply pooling
W = H = self.img_size // self.patch_size
T = self.num_frames
cls_tokens = x[:, 0, :].unsqueeze(1)
other_tokens = x[:, 1:, :]
x = rearrange(other_tokens, "b (h w t) m -> b t (h w) m", h=H, w=W, t=T)
x = torch.mean(x, dim=1)
x = torch.cat((cls_tokens, x), dim=1)
return x
def load_state_dict(self, pretrained_ckpt_path):
logging.info(
"Loading TimeSformer checkpoints from {}".format(pretrained_ckpt_path)
)
if pretrained_ckpt_path == "vit_base_patch16_224":
load_ckpt_func = load_pretrained_imagenet
else:
load_ckpt_func = load_pretrained_kinetics
load_ckpt_func(
self.model,
num_classes=self.model.num_classes,
in_chans=3,
filter_fn=_conv_filter,
img_size=self.img_size,
num_frames=self.num_frames,
num_patches=self.num_patches,
attention_type=self.attention_type,
pretrained_model=pretrained_ckpt_path,
)