Spaces:
Sleeping
Sleeping
File size: 20,265 Bytes
e84842d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/facebookresearch/TimeSformer
"""
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Copyright 2020 Ross Wightman
# Modified Model definition
import logging
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils
import torch.utils.checkpoint
from einops import rearrange
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
from .helpers import load_pretrained, load_pretrained_imagenet, load_pretrained_kinetics
from .vit_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
DropPath,
to_2tuple,
trunc_normal_,
)
def _cfg(url="", **kwargs):
return {
"url": url,
"num_classes": 1000,
"input_size": (3, 224, 224),
"pool_size": None,
"crop_pct": 0.9,
"interpolation": "bicubic",
"mean": IMAGENET_DEFAULT_MEAN,
"std": IMAGENET_DEFAULT_STD,
"first_conv": "patch_embed.proj",
"classifier": "head",
**kwargs,
}
default_cfgs = {
"vit_base_patch16_224": _cfg(
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth",
mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5),
),
}
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
with_qkv=True,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.with_qkv = with_qkv
if self.with_qkv:
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.attn_drop = nn.Dropout(attn_drop)
def forward(self, x):
B, N, C = x.shape
if self.with_qkv:
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv[0], qkv[1], qkv[2]
else:
qkv = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(
0, 2, 1, 3
)
q, k, v = qkv, qkv, qkv
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
if self.with_qkv:
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
layer_num,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.1,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
attention_type="divided_space_time",
use_grad_checkpointing=False,
):
super().__init__()
self.attention_type = attention_type
assert attention_type in [
"divided_space_time",
"space_only",
"joint_space_time",
]
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
# Temporal Attention Parameters
if self.attention_type == "divided_space_time":
self.temporal_norm1 = norm_layer(dim)
self.temporal_attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
self.temporal_fc = nn.Linear(dim, dim)
# drop path
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
# [dxli]
self.layer_num = layer_num
self.use_grad_checkpointing = use_grad_checkpointing
if use_grad_checkpointing:
self.temporal_attn = checkpoint_wrapper(self.temporal_attn)
self.attn = checkpoint_wrapper(self.attn)
self.mlp = checkpoint_wrapper(self.mlp)
def forward(self, x, B, T, W):
num_spatial_tokens = (x.size(1) - 1) // T
H = num_spatial_tokens // W
if self.attention_type in ["space_only", "joint_space_time"]:
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
elif self.attention_type == "divided_space_time":
# Temporal
xt = x[:, 1:, :]
xt = rearrange(xt, "b (h w t) m -> (b h w) t m", b=B, h=H, w=W, t=T)
temporal_attn_out = self.temporal_attn(self.temporal_norm1(xt))
res_temporal = self.drop_path(temporal_attn_out)
res_temporal = rearrange(
res_temporal, "(b h w) t m -> b (h w t) m", b=B, h=H, w=W, t=T
)
res_temporal = self.temporal_fc(res_temporal)
xt = x[:, 1:, :] + res_temporal
# Spatial
init_cls_token = x[:, 0, :].unsqueeze(1)
cls_token = init_cls_token.repeat(1, T, 1)
cls_token = rearrange(cls_token, "b t m -> (b t) m", b=B, t=T).unsqueeze(1)
xs = xt
xs = rearrange(xs, "b (h w t) m -> (b t) (h w) m", b=B, h=H, w=W, t=T)
xs = torch.cat((cls_token, xs), 1)
spatial_attn_out = self.attn(self.norm1(xs))
res_spatial = self.drop_path(spatial_attn_out)
# Taking care of CLS token
cls_token = res_spatial[:, 0, :]
cls_token = rearrange(cls_token, "(b t) m -> b t m", b=B, t=T)
# averaging for every frame
cls_token = torch.mean(cls_token, 1, True)
res_spatial = res_spatial[:, 1:, :]
res_spatial = rearrange(
res_spatial, "(b t) (h w) m -> b (h w t) m", b=B, h=H, w=W, t=T
)
res = res_spatial
x = xt
# Mlp
x = torch.cat((init_cls_token, x), 1) + torch.cat((cls_token, res), 1)
x_res = x
x = self.norm2(x)
# x = x + self.drop_path(self.mlp(self.norm2(x)))
# MLP
mlp_out = self.mlp(x)
x = x_res + self.drop_path(mlp_out)
return x
class PatchEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
)
def forward(self, x):
B, C, T, H, W = x.shape
x = rearrange(x, "b c t h w -> (b t) c h w")
x = self.proj(x)
W = x.size(-1)
x = x.flatten(2).transpose(1, 2)
return x, T, W
class VisionTransformer(nn.Module):
"""Vision Transformere"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.1,
hybrid_backbone=None,
norm_layer=nn.LayerNorm,
num_frames=8,
attention_type="divided_space_time",
dropout=0.0,
use_grad_checkpointing=False,
ckpt_layer=0,
):
super().__init__()
self.attention_type = attention_type
self.depth = depth
self.dropout = nn.Dropout(dropout)
self.num_classes = num_classes
# num_features for consistency with other models
self.num_features = self.embed_dim = embed_dim
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
# Positional Embeddings
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
if self.attention_type != "space_only":
self.time_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim))
self.time_drop = nn.Dropout(p=drop_rate)
# Attention Blocks
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, self.depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
Block(
layer_num=i,
use_grad_checkpointing=(
use_grad_checkpointing and i >= self.depth - ckpt_layer
),
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
attention_type=self.attention_type,
)
for i in range(self.depth)
]
)
self.norm = norm_layer(embed_dim)
# Classifier head
self.head = (
nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
)
trunc_normal_(self.pos_embed, std=0.02)
trunc_normal_(self.cls_token, std=0.02)
self.apply(self._init_weights)
# initialization of temporal attention weights
if self.attention_type == "divided_space_time":
i = 0
for m in self.blocks.modules():
m_str = str(m)
if "Block" in m_str:
if i > 0:
nn.init.constant_(m.temporal_fc.weight, 0)
nn.init.constant_(m.temporal_fc.bias, 0)
i += 1
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token", "time_embed"}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=""):
self.num_classes = num_classes
self.head = (
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
)
def remove_classifier(self):
self.num_classes = 0
self.head = None
def forward_features(self, x):
B = x.shape[0]
x, T, W = self.patch_embed(x)
cls_tokens = self.cls_token.expand(x.size(0), -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# resizing the positional embeddings in case they don't match the input at inference
if x.size(1) != self.pos_embed.size(1):
pos_embed = self.pos_embed
cls_pos_embed = pos_embed[0, 0, :].unsqueeze(0).unsqueeze(1)
other_pos_embed = pos_embed[0, 1:, :].unsqueeze(0).transpose(1, 2)
P = int(other_pos_embed.size(2) ** 0.5)
H = x.size(1) // W
other_pos_embed = other_pos_embed.reshape(1, x.size(2), P, P)
new_pos_embed = F.interpolate(other_pos_embed, size=(H, W), mode="nearest")
new_pos_embed = new_pos_embed.flatten(2)
new_pos_embed = new_pos_embed.transpose(1, 2)
new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1)
x = x + new_pos_embed
else:
x = x + self.pos_embed
x = self.pos_drop(x)
# Time Embeddings
if self.attention_type != "space_only":
cls_tokens = x[:B, 0, :].unsqueeze(1)
x = x[:, 1:]
x = rearrange(x, "(b t) n m -> (b n) t m", b=B, t=T)
# Resizing time embeddings in case they don't match
if T != self.time_embed.size(1):
time_embed = self.time_embed.transpose(1, 2)
new_time_embed = F.interpolate(time_embed, size=(T), mode="nearest")
new_time_embed = new_time_embed.transpose(1, 2)
x = x + new_time_embed
else:
x = x + self.time_embed
x = self.time_drop(x)
x = rearrange(x, "(b n) t m -> b (n t) m", b=B, t=T)
x = torch.cat((cls_tokens, x), dim=1)
# Attention blocks
for blk in self.blocks:
x = blk(x, B, T, W)
# Predictions for space-only baseline
if self.attention_type == "space_only":
x = rearrange(x, "(b t) n m -> b t n m", b=B, t=T)
x = torch.mean(x, 1) # averaging predictions for every frame
x = self.norm(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _conv_filter(state_dict, patch_size=16):
"""convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if "patch_embed.proj.weight" in k:
if v.shape[-1] != patch_size:
patch_size = v.shape[-1]
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
class vit_base_patch16_224(nn.Module):
def __init__(self, cfg, **kwargs):
super(vit_base_patch16_224, self).__init__()
self.pretrained = True
patch_size = 16
self.model = VisionTransformer(
img_size=cfg.DATA.TRAIN_CROP_SIZE,
num_classes=cfg.MODEL.NUM_CLASSES,
patch_size=patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.1,
num_frames=cfg.DATA.NUM_FRAMES,
attention_type=cfg.TIMESFORMER.ATTENTION_TYPE,
**kwargs,
)
self.attention_type = cfg.TIMESFORMER.ATTENTION_TYPE
self.model.default_cfg = default_cfgs["vit_base_patch16_224"]
self.num_patches = (cfg.DATA.TRAIN_CROP_SIZE // patch_size) * (
cfg.DATA.TRAIN_CROP_SIZE // patch_size
)
pretrained_model = cfg.TIMESFORMER.PRETRAINED_MODEL
if self.pretrained:
load_pretrained(
self.model,
num_classes=self.model.num_classes,
in_chans=kwargs.get("in_chans", 3),
filter_fn=_conv_filter,
img_size=cfg.DATA.TRAIN_CROP_SIZE,
num_patches=self.num_patches,
attention_type=self.attention_type,
pretrained_model=pretrained_model,
)
def forward(self, x):
x = self.model(x)
return x
class TimeSformer(nn.Module):
def __init__(
self,
image_size=224,
patch_size=16,
n_frms=8,
attn_drop_rate=0.0,
drop_path_rate=0.1,
drop_rate=0,
use_grad_ckpt=False,
ckpt_layer=0,
remove_classifier=True,
**kwargs,
):
super(TimeSformer, self).__init__()
self.img_size = image_size
self.patch_size = patch_size
self.num_frames = n_frms
self.attn_drop_rate = attn_drop_rate
self.drop_path_rate = drop_path_rate
self.drop_rate = drop_rate
self.use_grad_ckpt = use_grad_ckpt
self.ckpt_layer = ckpt_layer
self.attention_type = "divided_space_time"
logging.info(
f"Initializing TimeSformer with img_size={self.img_size}, patch_size={self.patch_size}, num_frames={self.num_frames}"
)
# will be ignored when loading official pretrained ckpt
self.num_classes = 400
self.model = VisionTransformer(
img_size=self.img_size,
num_classes=self.num_classes,
patch_size=self.patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
drop_rate=self.drop_rate,
attn_drop_rate=self.attn_drop_rate,
drop_path_rate=self.drop_path_rate,
num_frames=self.num_frames,
attention_type=self.attention_type,
use_grad_checkpointing=self.use_grad_ckpt,
ckpt_layer=self.ckpt_layer,
**kwargs,
)
if remove_classifier:
self.model.remove_classifier()
self.model.default_cfg = default_cfgs[
"vit_base_patch" + str(self.patch_size) + "_224"
]
self.num_patches = (self.img_size // self.patch_size) * (
self.img_size // self.patch_size
)
def forward(self, x):
x = self.model(x)
return x
def forward_features(self, x):
# b, c, t, h, w = x.shape
x = self.model.forward_features(x)
## apply pooling
W = H = self.img_size // self.patch_size
T = self.num_frames
cls_tokens = x[:, 0, :].unsqueeze(1)
other_tokens = x[:, 1:, :]
x = rearrange(other_tokens, "b (h w t) m -> b t (h w) m", h=H, w=W, t=T)
x = torch.mean(x, dim=1)
x = torch.cat((cls_tokens, x), dim=1)
return x
def load_state_dict(self, pretrained_ckpt_path):
logging.info(
"Loading TimeSformer checkpoints from {}".format(pretrained_ckpt_path)
)
if pretrained_ckpt_path == "vit_base_patch16_224":
load_ckpt_func = load_pretrained_imagenet
else:
load_ckpt_func = load_pretrained_kinetics
load_ckpt_func(
self.model,
num_classes=self.model.num_classes,
in_chans=3,
filter_fn=_conv_filter,
img_size=self.img_size,
num_frames=self.num_frames,
num_patches=self.num_patches,
attention_type=self.attention_type,
pretrained_model=pretrained_ckpt_path,
)
|