""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause Based on https://github.com/facebookresearch/TimeSformer """ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright 2020 Ross Wightman # Modified Model definition import logging from functools import partial import torch import torch.nn as nn import torch.nn.functional as F import torch.utils import torch.utils.checkpoint from einops import rearrange from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper from .helpers import load_pretrained, load_pretrained_imagenet, load_pretrained_kinetics from .vit_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, DropPath, to_2tuple, trunc_normal_, ) def _cfg(url="", **kwargs): return { "url": url, "num_classes": 1000, "input_size": (3, 224, 224), "pool_size": None, "crop_pct": 0.9, "interpolation": "bicubic", "mean": IMAGENET_DEFAULT_MEAN, "std": IMAGENET_DEFAULT_STD, "first_conv": "patch_embed.proj", "classifier": "head", **kwargs, } default_cfgs = { "vit_base_patch16_224": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth", mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), } class Mlp(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, with_qkv=True, ): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 self.with_qkv = with_qkv if self.with_qkv: self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.attn_drop = nn.Dropout(attn_drop) def forward(self, x): B, N, C = x.shape if self.with_qkv: qkv = ( self.qkv(x) .reshape(B, N, 3, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) q, k, v = qkv[0], qkv[1], qkv[2] else: qkv = x.reshape(B, N, self.num_heads, C // self.num_heads).permute( 0, 2, 1, 3 ) q, k, v = qkv, qkv, qkv attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) if self.with_qkv: x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__( self, dim, num_heads, layer_num, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.1, act_layer=nn.GELU, norm_layer=nn.LayerNorm, attention_type="divided_space_time", use_grad_checkpointing=False, ): super().__init__() self.attention_type = attention_type assert attention_type in [ "divided_space_time", "space_only", "joint_space_time", ] self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, ) # Temporal Attention Parameters if self.attention_type == "divided_space_time": self.temporal_norm1 = norm_layer(dim) self.temporal_attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, ) self.temporal_fc = nn.Linear(dim, dim) # drop path self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) # [dxli] self.layer_num = layer_num self.use_grad_checkpointing = use_grad_checkpointing if use_grad_checkpointing: self.temporal_attn = checkpoint_wrapper(self.temporal_attn) self.attn = checkpoint_wrapper(self.attn) self.mlp = checkpoint_wrapper(self.mlp) def forward(self, x, B, T, W): num_spatial_tokens = (x.size(1) - 1) // T H = num_spatial_tokens // W if self.attention_type in ["space_only", "joint_space_time"]: x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x elif self.attention_type == "divided_space_time": # Temporal xt = x[:, 1:, :] xt = rearrange(xt, "b (h w t) m -> (b h w) t m", b=B, h=H, w=W, t=T) temporal_attn_out = self.temporal_attn(self.temporal_norm1(xt)) res_temporal = self.drop_path(temporal_attn_out) res_temporal = rearrange( res_temporal, "(b h w) t m -> b (h w t) m", b=B, h=H, w=W, t=T ) res_temporal = self.temporal_fc(res_temporal) xt = x[:, 1:, :] + res_temporal # Spatial init_cls_token = x[:, 0, :].unsqueeze(1) cls_token = init_cls_token.repeat(1, T, 1) cls_token = rearrange(cls_token, "b t m -> (b t) m", b=B, t=T).unsqueeze(1) xs = xt xs = rearrange(xs, "b (h w t) m -> (b t) (h w) m", b=B, h=H, w=W, t=T) xs = torch.cat((cls_token, xs), 1) spatial_attn_out = self.attn(self.norm1(xs)) res_spatial = self.drop_path(spatial_attn_out) # Taking care of CLS token cls_token = res_spatial[:, 0, :] cls_token = rearrange(cls_token, "(b t) m -> b t m", b=B, t=T) # averaging for every frame cls_token = torch.mean(cls_token, 1, True) res_spatial = res_spatial[:, 1:, :] res_spatial = rearrange( res_spatial, "(b t) (h w) m -> b (h w t) m", b=B, h=H, w=W, t=T ) res = res_spatial x = xt # Mlp x = torch.cat((init_cls_token, x), 1) + torch.cat((cls_token, res), 1) x_res = x x = self.norm2(x) # x = x + self.drop_path(self.mlp(self.norm2(x))) # MLP mlp_out = self.mlp(x) x = x_res + self.drop_path(mlp_out) return x class PatchEmbed(nn.Module): """Image to Patch Embedding""" def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) def forward(self, x): B, C, T, H, W = x.shape x = rearrange(x, "b c t h w -> (b t) c h w") x = self.proj(x) W = x.size(-1) x = x.flatten(2).transpose(1, 2) return x, T, W class VisionTransformer(nn.Module): """Vision Transformere""" def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.1, hybrid_backbone=None, norm_layer=nn.LayerNorm, num_frames=8, attention_type="divided_space_time", dropout=0.0, use_grad_checkpointing=False, ckpt_layer=0, ): super().__init__() self.attention_type = attention_type self.depth = depth self.dropout = nn.Dropout(dropout) self.num_classes = num_classes # num_features for consistency with other models self.num_features = self.embed_dim = embed_dim self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ) num_patches = self.patch_embed.num_patches # Positional Embeddings self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) if self.attention_type != "space_only": self.time_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim)) self.time_drop = nn.Dropout(p=drop_rate) # Attention Blocks dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, self.depth) ] # stochastic depth decay rule self.blocks = nn.ModuleList( [ Block( layer_num=i, use_grad_checkpointing=( use_grad_checkpointing and i >= self.depth - ckpt_layer ), dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, attention_type=self.attention_type, ) for i in range(self.depth) ] ) self.norm = norm_layer(embed_dim) # Classifier head self.head = ( nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() ) trunc_normal_(self.pos_embed, std=0.02) trunc_normal_(self.cls_token, std=0.02) self.apply(self._init_weights) # initialization of temporal attention weights if self.attention_type == "divided_space_time": i = 0 for m in self.blocks.modules(): m_str = str(m) if "Block" in m_str: if i > 0: nn.init.constant_(m.temporal_fc.weight, 0) nn.init.constant_(m.temporal_fc.bias, 0) i += 1 def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {"pos_embed", "cls_token", "time_embed"} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=""): self.num_classes = num_classes self.head = ( nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() ) def remove_classifier(self): self.num_classes = 0 self.head = None def forward_features(self, x): B = x.shape[0] x, T, W = self.patch_embed(x) cls_tokens = self.cls_token.expand(x.size(0), -1, -1) x = torch.cat((cls_tokens, x), dim=1) # resizing the positional embeddings in case they don't match the input at inference if x.size(1) != self.pos_embed.size(1): pos_embed = self.pos_embed cls_pos_embed = pos_embed[0, 0, :].unsqueeze(0).unsqueeze(1) other_pos_embed = pos_embed[0, 1:, :].unsqueeze(0).transpose(1, 2) P = int(other_pos_embed.size(2) ** 0.5) H = x.size(1) // W other_pos_embed = other_pos_embed.reshape(1, x.size(2), P, P) new_pos_embed = F.interpolate(other_pos_embed, size=(H, W), mode="nearest") new_pos_embed = new_pos_embed.flatten(2) new_pos_embed = new_pos_embed.transpose(1, 2) new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1) x = x + new_pos_embed else: x = x + self.pos_embed x = self.pos_drop(x) # Time Embeddings if self.attention_type != "space_only": cls_tokens = x[:B, 0, :].unsqueeze(1) x = x[:, 1:] x = rearrange(x, "(b t) n m -> (b n) t m", b=B, t=T) # Resizing time embeddings in case they don't match if T != self.time_embed.size(1): time_embed = self.time_embed.transpose(1, 2) new_time_embed = F.interpolate(time_embed, size=(T), mode="nearest") new_time_embed = new_time_embed.transpose(1, 2) x = x + new_time_embed else: x = x + self.time_embed x = self.time_drop(x) x = rearrange(x, "(b n) t m -> b (n t) m", b=B, t=T) x = torch.cat((cls_tokens, x), dim=1) # Attention blocks for blk in self.blocks: x = blk(x, B, T, W) # Predictions for space-only baseline if self.attention_type == "space_only": x = rearrange(x, "(b t) n m -> b t n m", b=B, t=T) x = torch.mean(x, 1) # averaging predictions for every frame x = self.norm(x) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def _conv_filter(state_dict, patch_size=16): """convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} for k, v in state_dict.items(): if "patch_embed.proj.weight" in k: if v.shape[-1] != patch_size: patch_size = v.shape[-1] v = v.reshape((v.shape[0], 3, patch_size, patch_size)) out_dict[k] = v return out_dict class vit_base_patch16_224(nn.Module): def __init__(self, cfg, **kwargs): super(vit_base_patch16_224, self).__init__() self.pretrained = True patch_size = 16 self.model = VisionTransformer( img_size=cfg.DATA.TRAIN_CROP_SIZE, num_classes=cfg.MODEL.NUM_CLASSES, patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.1, num_frames=cfg.DATA.NUM_FRAMES, attention_type=cfg.TIMESFORMER.ATTENTION_TYPE, **kwargs, ) self.attention_type = cfg.TIMESFORMER.ATTENTION_TYPE self.model.default_cfg = default_cfgs["vit_base_patch16_224"] self.num_patches = (cfg.DATA.TRAIN_CROP_SIZE // patch_size) * ( cfg.DATA.TRAIN_CROP_SIZE // patch_size ) pretrained_model = cfg.TIMESFORMER.PRETRAINED_MODEL if self.pretrained: load_pretrained( self.model, num_classes=self.model.num_classes, in_chans=kwargs.get("in_chans", 3), filter_fn=_conv_filter, img_size=cfg.DATA.TRAIN_CROP_SIZE, num_patches=self.num_patches, attention_type=self.attention_type, pretrained_model=pretrained_model, ) def forward(self, x): x = self.model(x) return x class TimeSformer(nn.Module): def __init__( self, image_size=224, patch_size=16, n_frms=8, attn_drop_rate=0.0, drop_path_rate=0.1, drop_rate=0, use_grad_ckpt=False, ckpt_layer=0, remove_classifier=True, **kwargs, ): super(TimeSformer, self).__init__() self.img_size = image_size self.patch_size = patch_size self.num_frames = n_frms self.attn_drop_rate = attn_drop_rate self.drop_path_rate = drop_path_rate self.drop_rate = drop_rate self.use_grad_ckpt = use_grad_ckpt self.ckpt_layer = ckpt_layer self.attention_type = "divided_space_time" logging.info( f"Initializing TimeSformer with img_size={self.img_size}, patch_size={self.patch_size}, num_frames={self.num_frames}" ) # will be ignored when loading official pretrained ckpt self.num_classes = 400 self.model = VisionTransformer( img_size=self.img_size, num_classes=self.num_classes, patch_size=self.patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop_rate=self.drop_rate, attn_drop_rate=self.attn_drop_rate, drop_path_rate=self.drop_path_rate, num_frames=self.num_frames, attention_type=self.attention_type, use_grad_checkpointing=self.use_grad_ckpt, ckpt_layer=self.ckpt_layer, **kwargs, ) if remove_classifier: self.model.remove_classifier() self.model.default_cfg = default_cfgs[ "vit_base_patch" + str(self.patch_size) + "_224" ] self.num_patches = (self.img_size // self.patch_size) * ( self.img_size // self.patch_size ) def forward(self, x): x = self.model(x) return x def forward_features(self, x): # b, c, t, h, w = x.shape x = self.model.forward_features(x) ## apply pooling W = H = self.img_size // self.patch_size T = self.num_frames cls_tokens = x[:, 0, :].unsqueeze(1) other_tokens = x[:, 1:, :] x = rearrange(other_tokens, "b (h w t) m -> b t (h w) m", h=H, w=W, t=T) x = torch.mean(x, dim=1) x = torch.cat((cls_tokens, x), dim=1) return x def load_state_dict(self, pretrained_ckpt_path): logging.info( "Loading TimeSformer checkpoints from {}".format(pretrained_ckpt_path) ) if pretrained_ckpt_path == "vit_base_patch16_224": load_ckpt_func = load_pretrained_imagenet else: load_ckpt_func = load_pretrained_kinetics load_ckpt_func( self.model, num_classes=self.model.num_classes, in_chans=3, filter_fn=_conv_filter, img_size=self.img_size, num_frames=self.num_frames, num_patches=self.num_patches, attention_type=self.attention_type, pretrained_model=pretrained_ckpt_path, )