Spaces:
Running
Running
File size: 4,303 Bytes
4f7c2c3 39dba98 4f7c2c3 39dba98 4f7c2c3 5a8efa9 811ddcb 39dba98 811ddcb 5a8efa9 811ddcb aff9d06 e97dbab 4f7c2c3 aef42cb 4f7c2c3 aef42cb 4f7c2c3 aef42cb 4f7c2c3 39dba98 aef42cb 39dba98 aef42cb 39dba98 aef42cb 39dba98 4f7c2c3 aef42cb 4f7c2c3 200f853 4f7c2c3 39dba98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import gradio as gr
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import os
import logging
import requests
from io import BytesIO
# Setup logging
logging.basicConfig(level=logging.INFO)
# Define the number of classes
num_classes = 3
# Download model from Hugging Face
def download_model():
model_path = hf_hub_download(repo_id="jays009/Resnet3", filename="model.pth")
return model_path
# Load the model from Hugging Face
def load_model(model_path):
model = models.resnet50(pretrained=False)
num_features = model.fc.in_features
model.fc = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(num_features, 3) # 3 classes
)
# Load the checkpoint
checkpoint = torch.load(model_path, map_location=torch.device("cpu"))
# Adjust for state dict mismatch by renaming keys
state_dict = checkpoint['model_state_dict']
new_state_dict = {}
for k, v in state_dict.items():
if k == "fc.weight" or k == "fc.bias":
new_state_dict[f"fc.1.{k.split('.')[-1]}"] = v
else:
new_state_dict[k] = v
model.load_state_dict(new_state_dict, strict=False)
model.eval()
return model
# Path to your model
model_path = download_model()
model = load_model(model_path)
# Define the transformation for the input image
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# Prediction function for an uploaded image
def predict_from_image_url(image_url):
try:
# Download the image from the provided URL
response = requests.get(image_url)
response.raise_for_status()
image = Image.open(BytesIO(response.content)).convert("RGB") # Convert to RGB (3 channels)
# Apply transformations
image_tensor = transform(image).unsqueeze(0) # Shape: [1, 3, 224, 224]
print(f"Input image tensor shape: {image_tensor.shape}") # Debug: Should be [1, 3, 224, 224]
# Perform prediction
with torch.no_grad():
outputs = model(image_tensor) # Shape: [1, 3]
print(f"Model output shape: {outputs.shape}") # Debug: Should be [1, 3]
probabilities = torch.softmax(outputs, dim=1)[0] # Convert to probabilities
predicted_class = torch.argmax(outputs, dim=1).item()
# Interpret the result
if predicted_class == 0:
return {
"result": "The photo is of Fall Army Worm with problem ID 126.",
"probabilities": {
"Fall Army Worm": f"{probabilities[0]*100:.2f}%",
"Phosphorus Deficiency": f"{probabilities[1]*100:.2f}%",
"Bacterial Leaf Blight": f"{probabilities[2]*100:.2f}%"
}
}
elif predicted_class == 1:
return {
"result": "The photo shows symptoms of Phosphorus Deficiency with Problem ID 142.",
"probabilities": {
"Fall Army Worm": f"{probabilities[0]*100:.2f}%",
"Phosphorus Deficiency": f"{probabilities[1]*100:.2f}%",
"Bacterial Leaf Blight": f"{probabilities[2]*100:.2f}%"
}
}
elif predicted_class == 2:
return {
"result": "The photo shows symptoms of Bacterial Leaf Blight with Problem ID 203.",
"probabilities": {
"Fall Army Worm": f"{probabilities[0]*100:.2f}%",
"Phosphorus Deficiency": f"{probabilities[1]*100:.2f}%",
"Bacterial Leaf Blight": f"{probabilities[2]*100:.2f}%"
}
}
else:
return {"error": "Unexpected class prediction."}
except Exception as e:
return {"error": str(e)}
# Gradio interface
demo = gr.Interface(
fn=predict_from_image_url,
inputs="text",
outputs="json",
title="Crop Anomaly Classification",
description="Enter a URL to an image for classification (Fall Army Worm, Phosphorus Deficiency, or Bacterial Leaf Blight).",
)
if __name__ == "__main__":
demo.launch() |