Spaces:
Sleeping
Sleeping
| """import gradio as gr | |
| from transformers import pipeline | |
| import fitz # PyMuPDF | |
| import docx | |
| import pptx | |
| import openpyxl | |
| import os | |
| from fastapi import FastAPI | |
| from fastapi.responses import RedirectResponse | |
| # Load your custom summarization model | |
| pipe = pipeline("summarization", model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn") | |
| # Document text extraction function | |
| def extract_text(file): | |
| ext = file.name.split(".")[-1].lower() | |
| path = file.name | |
| if ext == "pdf": | |
| try: | |
| with fitz.open(path) as doc: | |
| return "\n".join([page.get_text("text") for page in doc]) | |
| except Exception as e: | |
| return f"Error reading PDF: {e}" | |
| elif ext == "docx": | |
| try: | |
| doc = docx.Document(path) | |
| return "\n".join([p.text for p in doc.paragraphs]) | |
| except Exception as e: | |
| return f"Error reading DOCX: {e}" | |
| elif ext == "pptx": | |
| try: | |
| prs = pptx.Presentation(path) | |
| text = "" | |
| for slide in prs.slides: | |
| for shape in slide.shapes: | |
| if hasattr(shape, "text"): | |
| text += shape.text + "\n" | |
| return text | |
| except Exception as e: | |
| return f"Error reading PPTX: {e}" | |
| elif ext == "xlsx": | |
| try: | |
| wb = openpyxl.load_workbook(path) | |
| text = "" | |
| for sheet in wb.sheetnames: | |
| for row in wb[sheet].iter_rows(values_only=True): | |
| text += " ".join([str(cell) for cell in row if cell]) + "\n" | |
| return text | |
| except Exception as e: | |
| return f"Error reading XLSX: {e}" | |
| else: | |
| return "Unsupported file format" | |
| # Summarization logic | |
| def summarize_document(file): | |
| text = extract_text(file) | |
| if "Error" in text or "Unsupported" in text: | |
| return text | |
| word_count = len(text.split()) | |
| max_summary_len = max(20, int(word_count * 0.2)) | |
| try: | |
| summary = pipe(text, max_length=max_summary_len, min_length=int(max_summary_len * 0.6), do_sample=False) | |
| # Print the summary to debug its structure | |
| print(summary) | |
| return summary[0]['summary_text'] # Access the correct key for the output | |
| except Exception as e: | |
| return f"Error during summarization: {e}" | |
| # Gradio Interface | |
| demo = gr.Interface( | |
| fn=summarize_document, | |
| inputs=gr.File(label="Upload a document (PDF, DOCX, PPTX, XLSX)", file_types=[".pdf", ".docx", ".pptx", ".xlsx"]), | |
| outputs=gr.Textbox(label="20% Summary"), | |
| title="π Document Summarizer (20% Length)", | |
| description="Upload a document and get a concise summary generated by your custom Hugging Face model." | |
| ) | |
| # FastAPI setup | |
| app = FastAPI() | |
| # Mount Gradio at "/" | |
| app = gr.mount_gradio_app(app, demo, path="/") | |
| # Optional root redirect | |
| @app.get("/") | |
| def redirect_to_interface(): | |
| return RedirectResponse(url="/")""" | |
| import gradio as gr | |
| from transformers import pipeline, AutoTokenizer | |
| import fitz # PyMuPDF | |
| import docx | |
| import pptx | |
| import openpyxl | |
| import re | |
| from nltk.tokenize import sent_tokenize | |
| from fastapi import FastAPI | |
| from fastapi.responses import RedirectResponse | |
| from typing import Optional | |
| import torch | |
| # CPU-optimized model loading | |
| MODEL_NAME = "facebook/bart-large-cnn" # Good balance of quality and size | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
| # Use smaller batch sizes and disable GPU | |
| pipe = pipeline( | |
| "summarization", | |
| model=MODEL_NAME, | |
| tokenizer=tokenizer, | |
| device=-1, # Force CPU usage | |
| torch_dtype=torch.float32 # Use 32-bit floats on CPU | |
| ) | |
| # Text processing utilities | |
| def clean_text(text: str) -> str: | |
| """Optimized text cleaning for CPU""" | |
| text = re.sub(r'\s+', ' ', text) # Combine whitespace | |
| text = re.sub(r'β’\s*|\d\.\s+', '', text) # Remove bullets and numbers | |
| text = re.sub(r'\[.*?\]|\(.*?\)', '', text) # Remove brackets/parentheses | |
| return text.strip() | |
| def split_into_chunks(text: str, max_chunk_size: int = 768) -> list[str]: | |
| """CPU-efficient text chunking""" | |
| sentences = sent_tokenize(text) | |
| chunks = [] | |
| current_chunk = "" | |
| for sentence in sentences: | |
| if len(current_chunk.split()) + len(sentence.split()) <= max_chunk_size: | |
| current_chunk += " " + sentence | |
| else: | |
| chunks.append(current_chunk.strip()) | |
| current_chunk = sentence | |
| if current_chunk: | |
| chunks.append(current_chunk.strip()) | |
| return chunks | |
| # Memory-efficient text extraction | |
| def extract_text(file) -> tuple[Optional[str], Optional[str]]: | |
| ext = file.name.split(".")[-1].lower() | |
| path = file.name | |
| try: | |
| if ext == "pdf": | |
| text = [] | |
| with fitz.open(path) as doc: | |
| for page in doc: | |
| text.append(page.get_text("text")) | |
| return clean_text("\n".join(text)), None | |
| elif ext == "docx": | |
| doc = docx.Document(path) | |
| return clean_text("\n".join(p.text for p in doc.paragraphs)), None | |
| elif ext == "pptx": | |
| text = [] | |
| prs = pptx.Presentation(path) | |
| for slide in prs.slides: | |
| for shape in slide.shapes: | |
| if hasattr(shape, "text"): | |
| text.append(shape.text) | |
| return clean_text("\n".join(text)), None | |
| elif ext == "xlsx": | |
| text = [] | |
| wb = openpyxl.load_workbook(path, read_only=True) | |
| for sheet in wb.sheetnames: | |
| for row in wb[sheet].iter_rows(values_only=True): | |
| text.append(" ".join(str(cell) for cell in row if cell)) | |
| return clean_text("\n".join(text)), None | |
| return None, "Unsupported file format" | |
| except Exception as e: | |
| return None, f"Error reading {ext.upper()}: {str(e)}" | |
| # CPU-optimized summarization | |
| def summarize_document(file, summary_length: str = "medium"): | |
| # CPU-friendly length parameters | |
| length_params = { | |
| "short": {"max_length": 80, "min_length": 30}, | |
| "medium": {"max_length": 150, "min_length": 60}, | |
| "long": {"max_length": 200, "min_length": 80} | |
| } | |
| text, error = extract_text(file) | |
| if error: | |
| return error | |
| if not text or len(text.split()) < 30: | |
| return "Document too short to summarize meaningfully" | |
| try: | |
| chunks = split_into_chunks(text) | |
| summaries = [] | |
| for chunk in chunks: | |
| summary = pipe( | |
| chunk, | |
| max_length=length_params[summary_length]["max_length"], | |
| min_length=length_params[summary_length]["min_length"], | |
| do_sample=False, | |
| truncation=True, | |
| no_repeat_ngram_size=2, # Reduced from 3 for CPU | |
| num_beams=2, # Reduced from 4 for CPU | |
| early_stopping=True | |
| ) | |
| summaries.append(summary[0]['summary_text']) | |
| # Efficient summary combination | |
| final_summary = " ".join(summaries) | |
| final_summary = ". ".join(s.strip().capitalize() | |
| for s in final_summary.split(". ") | |
| if s.strip()) | |
| return final_summary if len(final_summary) > 25 else "Summary too short - try a longer document" | |
| except Exception as e: | |
| return f"Summarization error: {str(e)}" | |
| # Lightweight Gradio interface | |
| with gr.Blocks(title="CPU Document Summarizer", theme="soft") as demo: | |
| gr.Markdown("## π CPU-Optimized Document Summarizer") | |
| with gr.Row(): | |
| with gr.Column(): | |
| file_input = gr.File( | |
| label="Upload Document", | |
| file_types=[".pdf", ".docx", ".pptx", ".xlsx"], | |
| type="filepath" | |
| ) | |
| length_radio = gr.Radio( | |
| ["short", "medium", "long"], | |
| value="medium", | |
| label="Summary Length" | |
| ) | |
| submit_btn = gr.Button("Summarize", variant="primary") | |
| with gr.Column(): | |
| output = gr.Textbox(label="Summary", lines=8) | |
| status = gr.Textbox(label="Status", interactive=False) | |
| def process(file, length): | |
| if not file: | |
| return "", "Error: No file uploaded" | |
| status = "Processing... (this may take a while on CPU)" | |
| summary = summarize_document(file, length) | |
| return summary, "Done" | |
| # FastAPI setup | |
| app = FastAPI() | |
| def redirect(): | |
| return RedirectResponse(url="/") | |
| app = gr.mount_gradio_app(app, demo, path="/") |