"""import gradio as gr from transformers import pipeline import fitz # PyMuPDF import docx import pptx import openpyxl import os from fastapi import FastAPI from fastapi.responses import RedirectResponse # Load your custom summarization model pipe = pipeline("summarization", model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn") # Document text extraction function def extract_text(file): ext = file.name.split(".")[-1].lower() path = file.name if ext == "pdf": try: with fitz.open(path) as doc: return "\n".join([page.get_text("text") for page in doc]) except Exception as e: return f"Error reading PDF: {e}" elif ext == "docx": try: doc = docx.Document(path) return "\n".join([p.text for p in doc.paragraphs]) except Exception as e: return f"Error reading DOCX: {e}" elif ext == "pptx": try: prs = pptx.Presentation(path) text = "" for slide in prs.slides: for shape in slide.shapes: if hasattr(shape, "text"): text += shape.text + "\n" return text except Exception as e: return f"Error reading PPTX: {e}" elif ext == "xlsx": try: wb = openpyxl.load_workbook(path) text = "" for sheet in wb.sheetnames: for row in wb[sheet].iter_rows(values_only=True): text += " ".join([str(cell) for cell in row if cell]) + "\n" return text except Exception as e: return f"Error reading XLSX: {e}" else: return "Unsupported file format" # Summarization logic def summarize_document(file): text = extract_text(file) if "Error" in text or "Unsupported" in text: return text word_count = len(text.split()) max_summary_len = max(20, int(word_count * 0.2)) try: summary = pipe(text, max_length=max_summary_len, min_length=int(max_summary_len * 0.6), do_sample=False) # Print the summary to debug its structure print(summary) return summary[0]['summary_text'] # Access the correct key for the output except Exception as e: return f"Error during summarization: {e}" # Gradio Interface demo = gr.Interface( fn=summarize_document, inputs=gr.File(label="Upload a document (PDF, DOCX, PPTX, XLSX)", file_types=[".pdf", ".docx", ".pptx", ".xlsx"]), outputs=gr.Textbox(label="20% Summary"), title="📄 Document Summarizer (20% Length)", description="Upload a document and get a concise summary generated by your custom Hugging Face model." ) # FastAPI setup app = FastAPI() # Mount Gradio at "/" app = gr.mount_gradio_app(app, demo, path="/") # Optional root redirect @app.get("/") def redirect_to_interface(): return RedirectResponse(url="/")""" import gradio as gr from transformers import pipeline, AutoTokenizer import fitz # PyMuPDF import docx import pptx import openpyxl import re from nltk.tokenize import sent_tokenize from fastapi import FastAPI from fastapi.responses import RedirectResponse from typing import Optional import torch # CPU-optimized model loading MODEL_NAME = "facebook/bart-large-cnn" # Good balance of quality and size tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) # Use smaller batch sizes and disable GPU pipe = pipeline( "summarization", model=MODEL_NAME, tokenizer=tokenizer, device=-1, # Force CPU usage torch_dtype=torch.float32 # Use 32-bit floats on CPU ) # Text processing utilities def clean_text(text: str) -> str: """Optimized text cleaning for CPU""" text = re.sub(r'\s+', ' ', text) # Combine whitespace text = re.sub(r'•\s*|\d\.\s+', '', text) # Remove bullets and numbers text = re.sub(r'\[.*?\]|\(.*?\)', '', text) # Remove brackets/parentheses return text.strip() def split_into_chunks(text: str, max_chunk_size: int = 768) -> list[str]: """CPU-efficient text chunking""" sentences = sent_tokenize(text) chunks = [] current_chunk = "" for sentence in sentences: if len(current_chunk.split()) + len(sentence.split()) <= max_chunk_size: current_chunk += " " + sentence else: chunks.append(current_chunk.strip()) current_chunk = sentence if current_chunk: chunks.append(current_chunk.strip()) return chunks # Memory-efficient text extraction def extract_text(file) -> tuple[Optional[str], Optional[str]]: ext = file.name.split(".")[-1].lower() path = file.name try: if ext == "pdf": text = [] with fitz.open(path) as doc: for page in doc: text.append(page.get_text("text")) return clean_text("\n".join(text)), None elif ext == "docx": doc = docx.Document(path) return clean_text("\n".join(p.text for p in doc.paragraphs)), None elif ext == "pptx": text = [] prs = pptx.Presentation(path) for slide in prs.slides: for shape in slide.shapes: if hasattr(shape, "text"): text.append(shape.text) return clean_text("\n".join(text)), None elif ext == "xlsx": text = [] wb = openpyxl.load_workbook(path, read_only=True) for sheet in wb.sheetnames: for row in wb[sheet].iter_rows(values_only=True): text.append(" ".join(str(cell) for cell in row if cell)) return clean_text("\n".join(text)), None return None, "Unsupported file format" except Exception as e: return None, f"Error reading {ext.upper()}: {str(e)}" # CPU-optimized summarization def summarize_document(file, summary_length: str = "medium"): # CPU-friendly length parameters length_params = { "short": {"max_length": 80, "min_length": 30}, "medium": {"max_length": 150, "min_length": 60}, "long": {"max_length": 200, "min_length": 80} } text, error = extract_text(file) if error: return error if not text or len(text.split()) < 30: return "Document too short to summarize meaningfully" try: chunks = split_into_chunks(text) summaries = [] for chunk in chunks: summary = pipe( chunk, max_length=length_params[summary_length]["max_length"], min_length=length_params[summary_length]["min_length"], do_sample=False, truncation=True, no_repeat_ngram_size=2, # Reduced from 3 for CPU num_beams=2, # Reduced from 4 for CPU early_stopping=True ) summaries.append(summary[0]['summary_text']) # Efficient summary combination final_summary = " ".join(summaries) final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip()) return final_summary if len(final_summary) > 25 else "Summary too short - try a longer document" except Exception as e: return f"Summarization error: {str(e)}" # Lightweight Gradio interface with gr.Blocks(title="CPU Document Summarizer", theme="soft") as demo: gr.Markdown("## 📄 CPU-Optimized Document Summarizer") with gr.Row(): with gr.Column(): file_input = gr.File( label="Upload Document", file_types=[".pdf", ".docx", ".pptx", ".xlsx"], type="filepath" ) length_radio = gr.Radio( ["short", "medium", "long"], value="medium", label="Summary Length" ) submit_btn = gr.Button("Summarize", variant="primary") with gr.Column(): output = gr.Textbox(label="Summary", lines=8) status = gr.Textbox(label="Status", interactive=False) @submit_btn.click(inputs=[file_input, length_radio], outputs=[output, status]) def process(file, length): if not file: return "", "Error: No file uploaded" status = "Processing... (this may take a while on CPU)" summary = summarize_document(file, length) return summary, "Done" # FastAPI setup app = FastAPI() @app.get("/") def redirect(): return RedirectResponse(url="/") app = gr.mount_gradio_app(app, demo, path="/")