Spaces:
Running
Running
File size: 8,784 Bytes
130c582 3a44bf2 0d84ecf 3a44bf2 c330600 3a44bf2 461e409 3a44bf2 bf33c6b c3071ac 3a44bf2 c3071ac 3a44bf2 5e30a65 3a44bf2 5e30a65 3a44bf2 0d84ecf 3a44bf2 0d84ecf 5e30a65 3a44bf2 91bdad5 5e30a65 3a44bf2 0d84ecf 3a44bf2 0d84ecf 3a44bf2 0d84ecf c330600 3a44bf2 5b4fc38 c3071ac 130c582 3a44bf2 130c582 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
"""import gradio as gr
from transformers import pipeline
import fitz # PyMuPDF
import docx
import pptx
import openpyxl
import os
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
# Load your custom summarization model
pipe = pipeline("summarization", model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn")
# Document text extraction function
def extract_text(file):
ext = file.name.split(".")[-1].lower()
path = file.name
if ext == "pdf":
try:
with fitz.open(path) as doc:
return "\n".join([page.get_text("text") for page in doc])
except Exception as e:
return f"Error reading PDF: {e}"
elif ext == "docx":
try:
doc = docx.Document(path)
return "\n".join([p.text for p in doc.paragraphs])
except Exception as e:
return f"Error reading DOCX: {e}"
elif ext == "pptx":
try:
prs = pptx.Presentation(path)
text = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text
except Exception as e:
return f"Error reading PPTX: {e}"
elif ext == "xlsx":
try:
wb = openpyxl.load_workbook(path)
text = ""
for sheet in wb.sheetnames:
for row in wb[sheet].iter_rows(values_only=True):
text += " ".join([str(cell) for cell in row if cell]) + "\n"
return text
except Exception as e:
return f"Error reading XLSX: {e}"
else:
return "Unsupported file format"
# Summarization logic
def summarize_document(file):
text = extract_text(file)
if "Error" in text or "Unsupported" in text:
return text
word_count = len(text.split())
max_summary_len = max(20, int(word_count * 0.2))
try:
summary = pipe(text, max_length=max_summary_len, min_length=int(max_summary_len * 0.6), do_sample=False)
# Print the summary to debug its structure
print(summary)
return summary[0]['summary_text'] # Access the correct key for the output
except Exception as e:
return f"Error during summarization: {e}"
# Gradio Interface
demo = gr.Interface(
fn=summarize_document,
inputs=gr.File(label="Upload a document (PDF, DOCX, PPTX, XLSX)", file_types=[".pdf", ".docx", ".pptx", ".xlsx"]),
outputs=gr.Textbox(label="20% Summary"),
title="π Document Summarizer (20% Length)",
description="Upload a document and get a concise summary generated by your custom Hugging Face model."
)
# FastAPI setup
app = FastAPI()
# Mount Gradio at "/"
app = gr.mount_gradio_app(app, demo, path="/")
# Optional root redirect
@app.get("/")
def redirect_to_interface():
return RedirectResponse(url="/")"""
import gradio as gr
from transformers import pipeline, AutoTokenizer
import fitz # PyMuPDF
import docx
import pptx
import openpyxl
import re
from nltk.tokenize import sent_tokenize
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
from typing import Optional
import torch
# CPU-optimized model loading
MODEL_NAME = "facebook/bart-large-cnn" # Good balance of quality and size
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# Use smaller batch sizes and disable GPU
pipe = pipeline(
"summarization",
model=MODEL_NAME,
tokenizer=tokenizer,
device=-1, # Force CPU usage
torch_dtype=torch.float32 # Use 32-bit floats on CPU
)
# Text processing utilities
def clean_text(text: str) -> str:
"""Optimized text cleaning for CPU"""
text = re.sub(r'\s+', ' ', text) # Combine whitespace
text = re.sub(r'β’\s*|\d\.\s+', '', text) # Remove bullets and numbers
text = re.sub(r'\[.*?\]|\(.*?\)', '', text) # Remove brackets/parentheses
return text.strip()
def split_into_chunks(text: str, max_chunk_size: int = 768) -> list[str]:
"""CPU-efficient text chunking"""
sentences = sent_tokenize(text)
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk.split()) + len(sentence.split()) <= max_chunk_size:
current_chunk += " " + sentence
else:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
# Memory-efficient text extraction
def extract_text(file) -> tuple[Optional[str], Optional[str]]:
ext = file.name.split(".")[-1].lower()
path = file.name
try:
if ext == "pdf":
text = []
with fitz.open(path) as doc:
for page in doc:
text.append(page.get_text("text"))
return clean_text("\n".join(text)), None
elif ext == "docx":
doc = docx.Document(path)
return clean_text("\n".join(p.text for p in doc.paragraphs)), None
elif ext == "pptx":
text = []
prs = pptx.Presentation(path)
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text.append(shape.text)
return clean_text("\n".join(text)), None
elif ext == "xlsx":
text = []
wb = openpyxl.load_workbook(path, read_only=True)
for sheet in wb.sheetnames:
for row in wb[sheet].iter_rows(values_only=True):
text.append(" ".join(str(cell) for cell in row if cell))
return clean_text("\n".join(text)), None
return None, "Unsupported file format"
except Exception as e:
return None, f"Error reading {ext.upper()}: {str(e)}"
# CPU-optimized summarization
def summarize_document(file, summary_length: str = "medium"):
# CPU-friendly length parameters
length_params = {
"short": {"max_length": 80, "min_length": 30},
"medium": {"max_length": 150, "min_length": 60},
"long": {"max_length": 200, "min_length": 80}
}
text, error = extract_text(file)
if error:
return error
if not text or len(text.split()) < 30:
return "Document too short to summarize meaningfully"
try:
chunks = split_into_chunks(text)
summaries = []
for chunk in chunks:
summary = pipe(
chunk,
max_length=length_params[summary_length]["max_length"],
min_length=length_params[summary_length]["min_length"],
do_sample=False,
truncation=True,
no_repeat_ngram_size=2, # Reduced from 3 for CPU
num_beams=2, # Reduced from 4 for CPU
early_stopping=True
)
summaries.append(summary[0]['summary_text'])
# Efficient summary combination
final_summary = " ".join(summaries)
final_summary = ". ".join(s.strip().capitalize()
for s in final_summary.split(". ")
if s.strip())
return final_summary if len(final_summary) > 25 else "Summary too short - try a longer document"
except Exception as e:
return f"Summarization error: {str(e)}"
# Lightweight Gradio interface
with gr.Blocks(title="CPU Document Summarizer", theme="soft") as demo:
gr.Markdown("## π CPU-Optimized Document Summarizer")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload Document",
file_types=[".pdf", ".docx", ".pptx", ".xlsx"],
type="filepath"
)
length_radio = gr.Radio(
["short", "medium", "long"],
value="medium",
label="Summary Length"
)
submit_btn = gr.Button("Summarize", variant="primary")
with gr.Column():
output = gr.Textbox(label="Summary", lines=8)
status = gr.Textbox(label="Status", interactive=False)
@submit_btn.click(inputs=[file_input, length_radio], outputs=[output, status])
def process(file, length):
if not file:
return "", "Error: No file uploaded"
status = "Processing... (this may take a while on CPU)"
summary = summarize_document(file, length)
return summary, "Done"
# FastAPI setup
app = FastAPI()
@app.get("/")
def redirect():
return RedirectResponse(url="/")
app = gr.mount_gradio_app(app, demo, path="/") |