Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,38 @@
|
|
1 |
from fastapi import FastAPI, UploadFile, File
|
2 |
from fastapi.responses import RedirectResponse
|
3 |
import gradio as gr
|
4 |
-
from transformers import pipeline,
|
5 |
import tempfile
|
6 |
import os
|
7 |
from PIL import Image
|
8 |
import fitz # PyMuPDF
|
9 |
import docx
|
10 |
-
import openpyxl
|
11 |
-
from pptx import Presentation
|
12 |
import easyocr
|
13 |
|
14 |
app = FastAPI()
|
15 |
|
16 |
-
#
|
|
|
|
|
|
|
|
|
17 |
try:
|
18 |
-
# Load summarization model directly with tokenizer
|
19 |
-
tokenizer = AutoTokenizer.from_pretrained("FeruzaBoynazarovaas/my_awesome_billsum_model", use_fast=False)
|
20 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("FeruzaBoynazarovaas/my_awesome_billsum_model")
|
21 |
summarizer = pipeline(
|
22 |
-
"
|
23 |
-
model=
|
24 |
-
|
25 |
)
|
26 |
except Exception as e:
|
27 |
print(f"Error loading summarizer: {e}")
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
33 |
-
reader = easyocr.Reader(['en'])
|
34 |
|
35 |
def extract_text_from_file(file_path: str, file_type: str):
|
36 |
"""Extract text from different document formats"""
|
@@ -41,26 +43,24 @@ def extract_text_from_file(file_path: str, file_type: str):
|
|
41 |
elif file_type == "docx":
|
42 |
doc = docx.Document(file_path)
|
43 |
return "\n".join(p.text for p in doc.paragraphs)
|
44 |
-
elif file_type == "pptx":
|
45 |
-
prs = Presentation(file_path)
|
46 |
-
return "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text"))
|
47 |
-
elif file_type == "xlsx":
|
48 |
-
wb = openpyxl.load_workbook(file_path)
|
49 |
-
return "\n".join(str(cell.value) for sheet in wb for row in sheet for cell in row)
|
50 |
else:
|
51 |
-
return "Unsupported file format"
|
52 |
except Exception as e:
|
53 |
return f"Error reading file: {str(e)}"
|
54 |
|
55 |
def process_document(file):
|
|
|
56 |
try:
|
57 |
file_ext = os.path.splitext(file.name)[1][1:].lower()
|
|
|
|
|
|
|
58 |
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file_ext}") as tmp:
|
59 |
tmp.write(file.read())
|
60 |
tmp_path = tmp.name
|
61 |
|
62 |
text = extract_text_from_file(tmp_path, file_ext)
|
63 |
-
summary = summarizer(text, max_length=
|
64 |
|
65 |
os.unlink(tmp_path)
|
66 |
return summary
|
@@ -68,11 +68,17 @@ def process_document(file):
|
|
68 |
return f"Processing error: {str(e)}"
|
69 |
|
70 |
def process_image(image):
|
|
|
71 |
try:
|
72 |
img = Image.open(image)
|
|
|
|
|
73 |
caption = captioner(img)[0]['generated_text']
|
|
|
|
|
74 |
ocr_result = reader.readtext(img)
|
75 |
ocr_text = " ".join([res[1] for res in ocr_result])
|
|
|
76 |
return {
|
77 |
"caption": caption,
|
78 |
"ocr_text": ocr_text if ocr_text else "No readable text found"
|
@@ -81,25 +87,29 @@ def process_image(image):
|
|
81 |
return {"error": str(e)}
|
82 |
|
83 |
# Gradio Interface
|
84 |
-
with gr.Blocks() as demo:
|
85 |
-
gr.Markdown("
|
86 |
|
87 |
with gr.Tab("Document Summarization"):
|
88 |
-
|
|
|
89 |
doc_output = gr.Textbox(label="Summary")
|
90 |
doc_button = gr.Button("Summarize")
|
91 |
|
92 |
with gr.Tab("Image Analysis"):
|
|
|
93 |
img_input = gr.Image(type="filepath", label="Upload Image")
|
94 |
-
|
95 |
-
|
|
|
96 |
img_button = gr.Button("Analyze")
|
97 |
|
98 |
doc_button.click(process_document, inputs=doc_input, outputs=doc_output)
|
99 |
img_button.click(process_image, inputs=img_input, outputs=[caption_output, ocr_output])
|
100 |
|
|
|
101 |
app = gr.mount_gradio_app(app, demo, path="/")
|
102 |
|
103 |
@app.get("/")
|
104 |
-
def
|
105 |
return RedirectResponse(url="/")
|
|
|
1 |
from fastapi import FastAPI, UploadFile, File
|
2 |
from fastapi.responses import RedirectResponse
|
3 |
import gradio as gr
|
4 |
+
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
|
5 |
import tempfile
|
6 |
import os
|
7 |
from PIL import Image
|
8 |
import fitz # PyMuPDF
|
9 |
import docx
|
|
|
|
|
10 |
import easyocr
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
14 |
+
# Lightweight model choices
|
15 |
+
SUMMARIZATION_MODEL = "facebook/bart-large-cnn" # 500MB
|
16 |
+
IMAGE_CAPTIONING_MODEL = "Salesforce/blip-image-captioning-base" # 300MB
|
17 |
+
|
18 |
+
# Initialize models
|
19 |
try:
|
|
|
|
|
|
|
20 |
summarizer = pipeline(
|
21 |
+
"summarization",
|
22 |
+
model=SUMMARIZATION_MODEL,
|
23 |
+
device="cpu"
|
24 |
)
|
25 |
except Exception as e:
|
26 |
print(f"Error loading summarizer: {e}")
|
27 |
+
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") # Fallback 250MB model
|
28 |
+
|
29 |
+
captioner = pipeline(
|
30 |
+
"image-to-text",
|
31 |
+
model=IMAGE_CAPTIONING_MODEL,
|
32 |
+
device="cpu"
|
33 |
+
)
|
34 |
|
35 |
+
reader = easyocr.Reader(['en']) # Lightweight OCR
|
|
|
|
|
36 |
|
37 |
def extract_text_from_file(file_path: str, file_type: str):
|
38 |
"""Extract text from different document formats"""
|
|
|
43 |
elif file_type == "docx":
|
44 |
doc = docx.Document(file_path)
|
45 |
return "\n".join(p.text for p in doc.paragraphs)
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
else:
|
47 |
+
return "Unsupported file format (only PDF/DOCX supported in lightweight version)"
|
48 |
except Exception as e:
|
49 |
return f"Error reading file: {str(e)}"
|
50 |
|
51 |
def process_document(file):
|
52 |
+
"""Handle document summarization"""
|
53 |
try:
|
54 |
file_ext = os.path.splitext(file.name)[1][1:].lower()
|
55 |
+
if file_ext not in ["pdf", "docx"]:
|
56 |
+
return "Lightweight version only supports PDF and DOCX"
|
57 |
+
|
58 |
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file_ext}") as tmp:
|
59 |
tmp.write(file.read())
|
60 |
tmp_path = tmp.name
|
61 |
|
62 |
text = extract_text_from_file(tmp_path, file_ext)
|
63 |
+
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)[0]['summary_text']
|
64 |
|
65 |
os.unlink(tmp_path)
|
66 |
return summary
|
|
|
68 |
return f"Processing error: {str(e)}"
|
69 |
|
70 |
def process_image(image):
|
71 |
+
"""Handle image captioning and OCR"""
|
72 |
try:
|
73 |
img = Image.open(image)
|
74 |
+
|
75 |
+
# Get caption
|
76 |
caption = captioner(img)[0]['generated_text']
|
77 |
+
|
78 |
+
# Get OCR text
|
79 |
ocr_result = reader.readtext(img)
|
80 |
ocr_text = " ".join([res[1] for res in ocr_result])
|
81 |
+
|
82 |
return {
|
83 |
"caption": caption,
|
84 |
"ocr_text": ocr_text if ocr_text else "No readable text found"
|
|
|
87 |
return {"error": str(e)}
|
88 |
|
89 |
# Gradio Interface
|
90 |
+
with gr.Blocks(title="Lightweight Document & Image Analysis") as demo:
|
91 |
+
gr.Markdown("## π Lightweight Document & Image Analysis")
|
92 |
|
93 |
with gr.Tab("Document Summarization"):
|
94 |
+
gr.Markdown("Supports PDF and DOCX files (max 10MB)")
|
95 |
+
doc_input = gr.File(label="Upload Document", file_types=[".pdf", ".docx"])
|
96 |
doc_output = gr.Textbox(label="Summary")
|
97 |
doc_button = gr.Button("Summarize")
|
98 |
|
99 |
with gr.Tab("Image Analysis"):
|
100 |
+
gr.Markdown("Get captions and extracted text from images")
|
101 |
img_input = gr.Image(type="filepath", label="Upload Image")
|
102 |
+
with gr.Accordion("Results", open=False):
|
103 |
+
caption_output = gr.Textbox(label="Image Caption")
|
104 |
+
ocr_output = gr.Textbox(label="Extracted Text")
|
105 |
img_button = gr.Button("Analyze")
|
106 |
|
107 |
doc_button.click(process_document, inputs=doc_input, outputs=doc_output)
|
108 |
img_button.click(process_image, inputs=img_input, outputs=[caption_output, ocr_output])
|
109 |
|
110 |
+
# Mount Gradio app
|
111 |
app = gr.mount_gradio_app(app, demo, path="/")
|
112 |
|
113 |
@app.get("/")
|
114 |
+
def redirect_to_interface():
|
115 |
return RedirectResponse(url="/")
|