Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
from fastapi import FastAPI, UploadFile, File
|
2 |
from fastapi.responses import RedirectResponse
|
3 |
import gradio as gr
|
4 |
-
from transformers import pipeline
|
5 |
import tempfile
|
6 |
import os
|
7 |
from PIL import Image
|
@@ -11,13 +11,27 @@ import openpyxl
|
|
11 |
from pptx import Presentation
|
12 |
import easyocr
|
13 |
|
14 |
-
# Initialize models
|
15 |
-
summarizer = pipeline("text2text-generation", model="FeruzaBoynazarovaas/my_awesome_billsum_model")
|
16 |
-
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
17 |
-
reader = easyocr.Reader(['en']) # For OCR
|
18 |
-
|
19 |
app = FastAPI()
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def extract_text_from_file(file_path: str, file_type: str):
|
22 |
"""Extract text from different document formats"""
|
23 |
try:
|
@@ -39,59 +53,53 @@ def extract_text_from_file(file_path: str, file_type: str):
|
|
39 |
return f"Error reading file: {str(e)}"
|
40 |
|
41 |
def process_document(file):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
return summary
|
56 |
|
57 |
def process_image(image):
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
"caption": caption,
|
70 |
-
"ocr_text": ocr_text if ocr_text else "No readable text found"
|
71 |
-
}
|
72 |
|
73 |
# Gradio Interface
|
74 |
with gr.Blocks() as demo:
|
75 |
-
gr.Markdown("# π Document & Image Analysis
|
76 |
|
77 |
with gr.Tab("Document Summarization"):
|
78 |
-
doc_input = gr.File(label="Upload Document
|
79 |
doc_output = gr.Textbox(label="Summary")
|
80 |
doc_button = gr.Button("Summarize")
|
81 |
|
82 |
with gr.Tab("Image Analysis"):
|
83 |
img_input = gr.Image(type="filepath", label="Upload Image")
|
84 |
-
|
85 |
-
|
86 |
-
ocr_output = gr.Textbox(label="Extracted Text")
|
87 |
img_button = gr.Button("Analyze")
|
88 |
|
89 |
doc_button.click(process_document, inputs=doc_input, outputs=doc_output)
|
90 |
img_button.click(process_image, inputs=img_input, outputs=[caption_output, ocr_output])
|
91 |
|
92 |
-
# Mount Gradio app
|
93 |
app = gr.mount_gradio_app(app, demo, path="/")
|
94 |
|
95 |
@app.get("/")
|
96 |
-
def
|
97 |
return RedirectResponse(url="/")
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File
|
2 |
from fastapi.responses import RedirectResponse
|
3 |
import gradio as gr
|
4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
import tempfile
|
6 |
import os
|
7 |
from PIL import Image
|
|
|
11 |
from pptx import Presentation
|
12 |
import easyocr
|
13 |
|
|
|
|
|
|
|
|
|
|
|
14 |
app = FastAPI()
|
15 |
|
16 |
+
# Initialize models with error handling
|
17 |
+
try:
|
18 |
+
# Load summarization model directly with tokenizer
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("FeruzaBoynazarovaas/my_awesome_billsum_model", use_fast=False)
|
20 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("FeruzaBoynazarovaas/my_awesome_billsum_model")
|
21 |
+
summarizer = pipeline(
|
22 |
+
"text2text-generation",
|
23 |
+
model=model,
|
24 |
+
tokenizer=tokenizer
|
25 |
+
)
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error loading summarizer: {e}")
|
28 |
+
# Fallback to a default model if custom fails
|
29 |
+
summarizer = pipeline("text2text-generation", model="t5-small")
|
30 |
+
|
31 |
+
# Other models (these should work fine)
|
32 |
+
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
33 |
+
reader = easyocr.Reader(['en'])
|
34 |
+
|
35 |
def extract_text_from_file(file_path: str, file_type: str):
|
36 |
"""Extract text from different document formats"""
|
37 |
try:
|
|
|
53 |
return f"Error reading file: {str(e)}"
|
54 |
|
55 |
def process_document(file):
|
56 |
+
try:
|
57 |
+
file_ext = os.path.splitext(file.name)[1][1:].lower()
|
58 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file_ext}") as tmp:
|
59 |
+
tmp.write(file.read())
|
60 |
+
tmp_path = tmp.name
|
61 |
+
|
62 |
+
text = extract_text_from_file(tmp_path, file_ext)
|
63 |
+
summary = summarizer(text, max_length=150, min_length=30, do_sample=False)[0]['generated_text']
|
64 |
+
|
65 |
+
os.unlink(tmp_path)
|
66 |
+
return summary
|
67 |
+
except Exception as e:
|
68 |
+
return f"Processing error: {str(e)}"
|
|
|
69 |
|
70 |
def process_image(image):
|
71 |
+
try:
|
72 |
+
img = Image.open(image)
|
73 |
+
caption = captioner(img)[0]['generated_text']
|
74 |
+
ocr_result = reader.readtext(img)
|
75 |
+
ocr_text = " ".join([res[1] for res in ocr_result])
|
76 |
+
return {
|
77 |
+
"caption": caption,
|
78 |
+
"ocr_text": ocr_text if ocr_text else "No readable text found"
|
79 |
+
}
|
80 |
+
except Exception as e:
|
81 |
+
return {"error": str(e)}
|
|
|
|
|
|
|
82 |
|
83 |
# Gradio Interface
|
84 |
with gr.Blocks() as demo:
|
85 |
+
gr.Markdown("# π Document & Image Analysis")
|
86 |
|
87 |
with gr.Tab("Document Summarization"):
|
88 |
+
doc_input = gr.File(label="Upload Document")
|
89 |
doc_output = gr.Textbox(label="Summary")
|
90 |
doc_button = gr.Button("Summarize")
|
91 |
|
92 |
with gr.Tab("Image Analysis"):
|
93 |
img_input = gr.Image(type="filepath", label="Upload Image")
|
94 |
+
caption_output = gr.Textbox(label="Image Caption")
|
95 |
+
ocr_output = gr.Textbox(label="Extracted Text")
|
|
|
96 |
img_button = gr.Button("Analyze")
|
97 |
|
98 |
doc_button.click(process_document, inputs=doc_input, outputs=doc_output)
|
99 |
img_button.click(process_image, inputs=img_input, outputs=[caption_output, ocr_output])
|
100 |
|
|
|
101 |
app = gr.mount_gradio_app(app, demo, path="/")
|
102 |
|
103 |
@app.get("/")
|
104 |
+
def redirect():
|
105 |
return RedirectResponse(url="/")
|