Spaces:
Running
Running
File size: 9,335 Bytes
130c582 3a44bf2 0d84ecf 3a44bf2 c330600 3a44bf2 461e409 3a44bf2 bf33c6b c3071ac 3a44bf2 c3071ac 3a44bf2 5e30a65 3a44bf2 5e30a65 3a44bf2 0d84ecf 3a44bf2 0d84ecf 5e30a65 3a44bf2 91bdad5 5e30a65 3a44bf2 0d84ecf 3a44bf2 0d84ecf 3a44bf2 0d84ecf c330600 3a44bf2 5b4fc38 c3071ac 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 f895e21 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 f895e21 551e732 f895e21 551e732 f895e21 551e732 f895e21 130c582 f895e21 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 130c582 551e732 145f8e8 130c582 551e732 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
"""import gradio as gr
from transformers import pipeline
import fitz # PyMuPDF
import docx
import pptx
import openpyxl
import os
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
# Load your custom summarization model
pipe = pipeline("summarization", model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn")
# Document text extraction function
def extract_text(file):
ext = file.name.split(".")[-1].lower()
path = file.name
if ext == "pdf":
try:
with fitz.open(path) as doc:
return "\n".join([page.get_text("text") for page in doc])
except Exception as e:
return f"Error reading PDF: {e}"
elif ext == "docx":
try:
doc = docx.Document(path)
return "\n".join([p.text for p in doc.paragraphs])
except Exception as e:
return f"Error reading DOCX: {e}"
elif ext == "pptx":
try:
prs = pptx.Presentation(path)
text = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text
except Exception as e:
return f"Error reading PPTX: {e}"
elif ext == "xlsx":
try:
wb = openpyxl.load_workbook(path)
text = ""
for sheet in wb.sheetnames:
for row in wb[sheet].iter_rows(values_only=True):
text += " ".join([str(cell) for cell in row if cell]) + "\n"
return text
except Exception as e:
return f"Error reading XLSX: {e}"
else:
return "Unsupported file format"
# Summarization logic
def summarize_document(file):
text = extract_text(file)
if "Error" in text or "Unsupported" in text:
return text
word_count = len(text.split())
max_summary_len = max(20, int(word_count * 0.2))
try:
summary = pipe(text, max_length=max_summary_len, min_length=int(max_summary_len * 0.6), do_sample=False)
# Print the summary to debug its structure
print(summary)
return summary[0]['summary_text'] # Access the correct key for the output
except Exception as e:
return f"Error during summarization: {e}"
# Gradio Interface
demo = gr.Interface(
fn=summarize_document,
inputs=gr.File(label="Upload a document (PDF, DOCX, PPTX, XLSX)", file_types=[".pdf", ".docx", ".pptx", ".xlsx"]),
outputs=gr.Textbox(label="20% Summary"),
title="π Document Summarizer (20% Length)",
description="Upload a document and get a concise summary generated by your custom Hugging Face model."
)
# FastAPI setup
app = FastAPI()
# Mount Gradio at "/"
app = gr.mount_gradio_app(app, demo, path="/")
# Optional root redirect
@app.get("/")
def redirect_to_interface():
return RedirectResponse(url="/")"""
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import fitz # PyMuPDF
import docx
import pptx
import openpyxl
import re
import nltk
from nltk.tokenize import sent_tokenize
import torch
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
# Download required NLTK data
nltk.download('punkt', quiet=True)
# Initialize components
app = FastAPI()
# Load summarization model (CPU optimized)
MODEL_NAME = "facebook/bart-large-cnn"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
summarizer = pipeline(
"summarization",
model=model,
tokenizer=tokenizer,
device=-1, # Force CPU usage
torch_dtype=torch.float32
)
def clean_text(text: str) -> str:
"""Clean and normalize document text"""
text = re.sub(r'\s+', ' ', text) # Normalize whitespace
text = re.sub(r'β’\s*|\d\.\s+', '', text) # Remove bullets and numbering
text = re.sub(r'\[.*?\]|\(.*?\)', '', text) # Remove brackets/parentheses
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE) # Remove page numbers
return text.strip()
def extract_text(file_path: str, file_extension: str) -> tuple[str, str]:
"""Extract text from various document formats"""
try:
if file_extension == "pdf":
with fitz.open(file_path) as doc:
return clean_text("\n".join(page.get_text("text") for page in doc)), ""
elif file_extension == "docx":
doc = docx.Document(file_path)
return clean_text("\n".join(p.text for p in doc.paragraphs)), ""
elif file_extension == "pptx":
prs = pptx.Presentation(file_path)
text = []
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text.append(shape.text)
return clean_text("\n".join(text)), ""
elif file_extension == "xlsx":
wb = openpyxl.load_workbook(file_path, read_only=True)
text = []
for sheet in wb.sheetnames:
for row in wb[sheet].iter_rows(values_only=True):
text.append(" ".join(str(cell) for cell in row if cell))
return clean_text("\n".join(text)), ""
return "", "Unsupported file format"
except Exception as e:
return "", f"Error reading {file_extension.upper()} file: {str(e)}"
def chunk_text(text: str, max_tokens: int = 768) -> list[str]:
"""Split text into manageable chunks for summarization"""
try:
sentences = sent_tokenize(text)
except:
# Fallback if sentence tokenization fails
words = text.split()
sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)]
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk.split()) + len(sentence.split()) <= max_tokens:
current_chunk += " " + sentence
else:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def generate_summary(text: str, length: str = "medium") -> str:
"""Generate summary with appropriate length parameters"""
length_params = {
"short": {"max_length": 80, "min_length": 30},
"medium": {"max_length": 150, "min_length": 60},
"long": {"max_length": 200, "min_length": 80}
}
chunks = chunk_text(text)
summaries = []
for chunk in chunks:
try:
summary = summarizer(
chunk,
max_length=length_params[length]["max_length"],
min_length=length_params[length]["min_length"],
do_sample=False,
truncation=True,
no_repeat_ngram_size=2,
num_beams=2,
early_stopping=True
)
summaries.append(summary[0]['summary_text'])
except Exception as e:
summaries.append(f"[Chunk error: {str(e)}]")
# Combine and format the final summary
final_summary = " ".join(summaries)
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
return final_summary if len(final_summary) > 25 else "Summary too short - document may be too brief"
def summarize_document(file, summary_length: str):
"""Main processing function for Gradio interface"""
if file is None:
return "Please upload a document first", "Ready"
file_path = file.name
file_extension = file_path.split(".")[-1].lower()
text, error = extract_text(file_path, file_extension)
if error:
return error, "Error"
if not text or len(text.split()) < 30:
return "Document is too short or contains too little text to summarize", "Ready"
try:
summary = generate_summary(text, summary_length)
return summary, "Summary complete"
except Exception as e:
return f"Summarization error: {str(e)}", "Error"
# Gradio Interface
with gr.Blocks(title="Document Summarizer", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π Document Summarizer")
gr.Markdown("Upload a document to generate a concise summary")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload Document",
file_types=[".pdf", ".docx", ".pptx", ".xlsx"],
type="filepath"
)
length_radio = gr.Radio(
["short", "medium", "long"],
value="medium",
label="Summary Length"
)
submit_btn = gr.Button("Generate Summary", variant="primary")
with gr.Column():
output = gr.Textbox(label="Summary", lines=10)
status = gr.Textbox(label="Status", interactive=False)
submit_btn.click(
fn=summarize_document,
inputs=[file_input, length_radio],
outputs=[output, status],
api_name="summarize"
)
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/")
def redirect_to_interface():
return RedirectResponse(url="/") |