File size: 4,960 Bytes
c330600
f94fa3b
 
 
fac31c8
f94fa3b
fac31c8
f94fa3b
fac31c8
f94fa3b
607327a
680d4a4
 
1e83db4
a74f8b0
f94fa3b
 
 
cf9a79a
 
f94fa3b
 
 
cf9a79a
f94fa3b
 
 
 
 
 
6dfac5c
f94fa3b
 
fac31c8
 
 
 
f94fa3b
 
12d05c0
f94fa3b
 
 
 
 
 
12d05c0
fac31c8
 
 
 
 
 
 
 
f94fa3b
fac31c8
 
 
f94fa3b
5b4fc38
 
fac31c8
3e87c53
c330600
 
 
c55ca48
 
 
 
c330600
79cce77
c330600
c55ca48
 
c330600
c55ca48
c330600
 
 
 
 
 
79cce77
 
 
c4c89fb
cb83f1d
79cce77
b0cc6e9
 
 
 
cb83f1d
 
79cce77
 
 
b0cc6e9
e59323e
79cce77
c330600
 
 
 
 
 
 
 
 
 
 
e59323e
cb83f1d
c330600
 
 
 
 
 
 
c55ca48
c330600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c55ca48
c330600
 
 
 
5b4fc38
fac31c8
79cce77
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""from fastapi import FastAPI, UploadFile, Form
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
import os
import shutil
from PIL import Image
from transformers import ViltProcessor, ViltForQuestionAnswering
from gtts import gTTS
import torch
import tempfile
import gradio as gr



app = FastAPI()

# Load VQA Model
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")


def answer_question_from_image(image, question):
    if image is None or not question.strip():
        return "Please upload an image and ask a question.", None

    # Process with model
    inputs = vqa_processor(image, question, return_tensors="pt")
    with torch.no_grad():
        outputs = vqa_model(**inputs)
    predicted_id = outputs.logits.argmax(-1).item()
    answer = vqa_model.config.id2label[predicted_id]

    # Generate TTS audio
    try:
        tts = gTTS(text=answer)
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
            tts.save(tmp.name)
            audio_path = tmp.name
    except Exception as e:
        return f"Answer: {answer}\n\n⚠️ Audio generation error: {e}", None

    return answer, audio_path


def process_image_question(image: Image.Image, question: str):
    answer, audio_path = answer_question_from_image(image, question)
    return answer, audio_path


gui = gr.Interface(
    fn=process_image_question,
    inputs=[
        gr.Image(type="pil", label="Upload Image"),
        gr.Textbox(lines=2, placeholder="Ask a question about the image...", label="Question")
    ],
    outputs=[
        gr.Textbox(label="Answer", lines=5),
        gr.Audio(label="Answer (Audio)", type="filepath")
    ],
    title="🧠 Image QA with Voice",
    description="Upload an image and ask a question. You'll get a text + spoken answer."
)

app = gr.mount_gradio_app(app, gui, path="/")

@app.get("/")
def home():
    return RedirectResponse(url="/") """
from fastapi import FastAPI, UploadFile, Form
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
import os
import shutil
from PIL import Image
from transformers import ViltProcessor, ViltForQuestionAnswering, AutoTokenizer, AutoModelForCausalLM
from gtts import gTTS
import torch
import tempfile
import gradio as gr

app = FastAPI()

# Load VQA Model
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")

# Load Falcon-RW-1B model to rewrite answers
gpt_tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-rw-1b")
gpt_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-rw-1b")

def rewrite_answer(question, short_answer):
    prompt = f"Question: {question}\nShort Answer: {short_answer}\nFull sentence:"  # Few-shot style prompt
    inputs = gpt_tokenizer(prompt, return_tensors="pt")
    with torch.no_grad():
        outputs = gpt_model.generate(
            **inputs,
            max_new_tokens=50,
            do_sample=True,
            top_p=0.95,
            temperature=0.8,
            pad_token_id=gpt_tokenizer.eos_token_id
        )
    rewritten = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
    return rewritten.split("Full sentence:")[-1].strip()

def answer_question_from_image(image, question):
    if image is None or not question.strip():
        return "Please upload an image and ask a question.", None

    inputs = vqa_processor(image, question, return_tensors="pt")
    with torch.no_grad():
        outputs = vqa_model(**inputs)
    predicted_id = outputs.logits.argmax(-1).item()
    short_answer = vqa_model.config.id2label[predicted_id]

    # Rewrite short answer to full sentence
    full_answer = rewrite_answer(question, short_answer)

    try:
        tts = gTTS(text=full_answer)
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
            tts.save(tmp.name)
            audio_path = tmp.name
    except Exception as e:
        return f"Answer: {full_answer}\n\n⚠️ Audio generation error: {e}", None

    return full_answer, audio_path

def process_image_question(image: Image.Image, question: str):
    answer, audio_path = answer_question_from_image(image, question)
    return answer, audio_path

gui = gr.Interface(
    fn=process_image_question,
    inputs=[
        gr.Image(type="pil", label="Upload Image"),
        gr.Textbox(lines=2, placeholder="Ask a question about the image...", label="Question")
    ],
    outputs=[
        gr.Textbox(label="Answer", lines=5),
        gr.Audio(label="Answer (Audio)", type="filepath")
    ],
    title="🧠 Image QA with Voice",
    description="Upload an image and ask a question. You'll get a full-sentence spoken answer."
)

app = gr.mount_gradio_app(app, gui, path="/")

@app.get("/")
def home():
    return RedirectResponse(url="/")