Spaces:
Restarting
Restarting
Update app.py
Browse files
app.py
CHANGED
@@ -70,7 +70,7 @@ from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
|
70 |
import os
|
71 |
import shutil
|
72 |
from PIL import Image
|
73 |
-
from transformers import ViltProcessor, ViltForQuestionAnswering, AutoTokenizer,
|
74 |
from gtts import gTTS
|
75 |
import torch
|
76 |
import tempfile
|
@@ -82,39 +82,26 @@ app = FastAPI()
|
|
82 |
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
83 |
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
84 |
|
85 |
-
# Load
|
86 |
-
gpt_tokenizer = AutoTokenizer.from_pretrained("
|
87 |
-
gpt_model =
|
88 |
|
89 |
def rewrite_answer(question, short_answer):
|
90 |
-
prompt = f"Write a full sentence
|
91 |
inputs = gpt_tokenizer(prompt, return_tensors="pt")
|
92 |
with torch.no_grad():
|
93 |
outputs = gpt_model.generate(
|
94 |
**inputs,
|
95 |
max_new_tokens=50,
|
96 |
do_sample=True,
|
97 |
-
top_k=40,
|
98 |
top_p=0.9,
|
99 |
-
temperature=0.
|
100 |
-
pad_token_id=gpt_tokenizer.
|
101 |
)
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
# Try to isolate the answer portion
|
106 |
-
if "Full sentence:" in generated:
|
107 |
-
rewritten = generated.split("Full sentence:")[-1].strip()
|
108 |
-
else:
|
109 |
-
rewritten = generated.strip()
|
110 |
-
|
111 |
-
# Fallback to basic templating if model fails
|
112 |
-
if not rewritten or len(rewritten.split()) < 3:
|
113 |
-
rewritten = f"The answer to the question '{question}' is: {short_answer}."
|
114 |
-
|
115 |
return rewritten
|
116 |
|
117 |
-
|
118 |
def answer_question_from_image(image, question):
|
119 |
if image is None or not question.strip():
|
120 |
return "Please upload an image and ask a question.", None
|
@@ -125,7 +112,7 @@ def answer_question_from_image(image, question):
|
|
125 |
predicted_id = outputs.logits.argmax(-1).item()
|
126 |
short_answer = vqa_model.config.id2label[predicted_id]
|
127 |
|
128 |
-
# Rewrite short answer to full sentence
|
129 |
full_answer = rewrite_answer(question, short_answer)
|
130 |
|
131 |
try:
|
|
|
70 |
import os
|
71 |
import shutil
|
72 |
from PIL import Image
|
73 |
+
from transformers import ViltProcessor, ViltForQuestionAnswering, AutoTokenizer, AutoModelForSeq2SeqLM
|
74 |
from gtts import gTTS
|
75 |
import torch
|
76 |
import tempfile
|
|
|
82 |
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
83 |
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
84 |
|
85 |
+
# Load FLAN-T5 model to rewrite answers (better for CPU)
|
86 |
+
gpt_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
|
87 |
+
gpt_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
|
88 |
|
89 |
def rewrite_answer(question, short_answer):
|
90 |
+
prompt = f"Write a full sentence that answers the question '{question}' using this answer: {short_answer}."
|
91 |
inputs = gpt_tokenizer(prompt, return_tensors="pt")
|
92 |
with torch.no_grad():
|
93 |
outputs = gpt_model.generate(
|
94 |
**inputs,
|
95 |
max_new_tokens=50,
|
96 |
do_sample=True,
|
|
|
97 |
top_p=0.9,
|
98 |
+
temperature=0.7,
|
99 |
+
pad_token_id=gpt_tokenizer.pad_token_id
|
100 |
)
|
101 |
|
102 |
+
rewritten = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
return rewritten
|
104 |
|
|
|
105 |
def answer_question_from_image(image, question):
|
106 |
if image is None or not question.strip():
|
107 |
return "Please upload an image and ask a question.", None
|
|
|
112 |
predicted_id = outputs.logits.argmax(-1).item()
|
113 |
short_answer = vqa_model.config.id2label[predicted_id]
|
114 |
|
115 |
+
# Rewrite short answer to full sentence
|
116 |
full_answer = rewrite_answer(question, short_answer)
|
117 |
|
118 |
try:
|