Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -65,15 +65,13 @@ app = gr.mount_gradio_app(app, gui, path="/")
|
|
65 |
@app.get("/")
|
66 |
def home():
|
67 |
return RedirectResponse(url="/") """
|
68 |
-
from fastapi import FastAPI
|
69 |
-
from fastapi.responses import RedirectResponse
|
70 |
-
import
|
71 |
-
import shutil
|
72 |
from PIL import Image
|
|
|
73 |
from transformers import ViltProcessor, ViltForQuestionAnswering, AutoTokenizer, AutoModelForCausalLM
|
74 |
from gtts import gTTS
|
75 |
-
import torch
|
76 |
-
import tempfile
|
77 |
import gradio as gr
|
78 |
|
79 |
app = FastAPI()
|
@@ -86,19 +84,30 @@ vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetune
|
|
86 |
gpt_tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
87 |
gpt_model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
92 |
inputs = gpt_tokenizer(prompt, return_tensors="pt")
|
93 |
with torch.no_grad():
|
94 |
outputs = gpt_model.generate(
|
95 |
**inputs,
|
96 |
-
max_new_tokens=
|
97 |
-
do_sample=
|
|
|
|
|
98 |
pad_token_id=gpt_tokenizer.eos_token_id
|
99 |
)
|
|
|
100 |
generated = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
102 |
return rewritten
|
103 |
|
104 |
def answer_question_from_image(image, question):
|
@@ -111,16 +120,17 @@ def answer_question_from_image(image, question):
|
|
111 |
predicted_id = outputs.logits.argmax(-1).item()
|
112 |
short_answer = vqa_model.config.id2label[predicted_id]
|
113 |
|
114 |
-
# Rewrite
|
115 |
-
full_answer = rewrite_answer(
|
116 |
|
|
|
117 |
try:
|
118 |
tts = gTTS(text=full_answer)
|
119 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
120 |
tts.save(tmp.name)
|
121 |
audio_path = tmp.name
|
122 |
except Exception as e:
|
123 |
-
return f"
|
124 |
|
125 |
return full_answer, audio_path
|
126 |
|
@@ -128,6 +138,7 @@ def process_image_question(image: Image.Image, question: str):
|
|
128 |
answer, audio_path = answer_question_from_image(image, question)
|
129 |
return answer, audio_path
|
130 |
|
|
|
131 |
gui = gr.Interface(
|
132 |
fn=process_image_question,
|
133 |
inputs=[
|
@@ -139,11 +150,12 @@ gui = gr.Interface(
|
|
139 |
gr.Audio(label="Answer (Audio)", type="filepath")
|
140 |
],
|
141 |
title="🧠 Image QA with Voice",
|
142 |
-
description="Upload an image and ask a question. You'll get a
|
143 |
)
|
144 |
|
|
|
145 |
app = gr.mount_gradio_app(app, gui, path="/")
|
146 |
|
147 |
@app.get("/")
|
148 |
def home():
|
149 |
-
return RedirectResponse(url="/")
|
|
|
65 |
@app.get("/")
|
66 |
def home():
|
67 |
return RedirectResponse(url="/") """
|
68 |
+
from fastapi import FastAPI
|
69 |
+
from fastapi.responses import RedirectResponse
|
70 |
+
import tempfile
|
|
|
71 |
from PIL import Image
|
72 |
+
import torch
|
73 |
from transformers import ViltProcessor, ViltForQuestionAnswering, AutoTokenizer, AutoModelForCausalLM
|
74 |
from gtts import gTTS
|
|
|
|
|
75 |
import gradio as gr
|
76 |
|
77 |
app = FastAPI()
|
|
|
84 |
gpt_tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
85 |
gpt_model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
86 |
|
87 |
+
def rewrite_answer(question, short_answer):
|
88 |
+
prompt = (
|
89 |
+
f"Question: {question}\n"
|
90 |
+
f"Short Answer: {short_answer}\n"
|
91 |
+
f"Now write a full sentence answering the question:"
|
92 |
+
)
|
93 |
inputs = gpt_tokenizer(prompt, return_tensors="pt")
|
94 |
with torch.no_grad():
|
95 |
outputs = gpt_model.generate(
|
96 |
**inputs,
|
97 |
+
max_new_tokens=50,
|
98 |
+
do_sample=True,
|
99 |
+
top_p=0.9,
|
100 |
+
temperature=0.7,
|
101 |
pad_token_id=gpt_tokenizer.eos_token_id
|
102 |
)
|
103 |
+
|
104 |
generated = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
105 |
+
|
106 |
+
if "Now write a full sentence answering the question:" in generated:
|
107 |
+
rewritten = generated.split("Now write a full sentence answering the question:")[-1].strip()
|
108 |
+
else:
|
109 |
+
rewritten = generated.strip()
|
110 |
+
|
111 |
return rewritten
|
112 |
|
113 |
def answer_question_from_image(image, question):
|
|
|
120 |
predicted_id = outputs.logits.argmax(-1).item()
|
121 |
short_answer = vqa_model.config.id2label[predicted_id]
|
122 |
|
123 |
+
# Rewrite to human-like sentence
|
124 |
+
full_answer = rewrite_answer(question, short_answer)
|
125 |
|
126 |
+
# Convert to speech
|
127 |
try:
|
128 |
tts = gTTS(text=full_answer)
|
129 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
130 |
tts.save(tmp.name)
|
131 |
audio_path = tmp.name
|
132 |
except Exception as e:
|
133 |
+
return f"{full_answer}\n\n⚠️ Audio generation error: {e}", None
|
134 |
|
135 |
return full_answer, audio_path
|
136 |
|
|
|
138 |
answer, audio_path = answer_question_from_image(image, question)
|
139 |
return answer, audio_path
|
140 |
|
141 |
+
# Gradio UI
|
142 |
gui = gr.Interface(
|
143 |
fn=process_image_question,
|
144 |
inputs=[
|
|
|
150 |
gr.Audio(label="Answer (Audio)", type="filepath")
|
151 |
],
|
152 |
title="🧠 Image QA with Voice",
|
153 |
+
description="Upload an image and ask a question. You'll get a human-like spoken answer."
|
154 |
)
|
155 |
|
156 |
+
# Mount on FastAPI
|
157 |
app = gr.mount_gradio_app(app, gui, path="/")
|
158 |
|
159 |
@app.get("/")
|
160 |
def home():
|
161 |
+
return RedirectResponse(url="/")
|