Spaces:
Runtime error
Runtime error
File size: 10,267 Bytes
5ef4c3f a702daa 5ef4c3f a702daa 5ef4c3f 28bcecc 5ef4c3f ce5afd9 79e78be 5ef4c3f 28bcecc 5ef4c3f 28bcecc 5ef4c3f a5f6b27 e0562fc 43eb4dd c0ae275 a702daa 79e78be 5ef4c3f 79e78be a702daa 79e78be a702daa 79e78be 5ef4c3f 43eb4dd 5ef4c3f 74efc30 43eb4dd 74efc30 5ef4c3f 70f1aa3 5ef4c3f 70f1aa3 5ef4c3f 43eb4dd 5ef4c3f 43eb4dd 5ef4c3f a702daa 5ef4c3f a702daa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import gradio as gr
import io
import numpy as np
import torch
from decord import cpu, VideoReader, bridge
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig
MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
DELAY_REASONS = {
"Step 1": ["Delay in Bead Insertion", "Lack of raw material"],
"Step 2": ["Inner Liner Adjustment by Technician", "Person rebuilding defective Tire Sections"],
"Step 3": ["Manual Adjustment in Ply1 apply", "Technician repairing defective Tire Sections"],
"Step 4": ["Delay in Bead set", "Lack of raw material"],
"Step 5": ["Delay in Turnup", "Lack of raw material"],
"Step 6": ["Person Repairing sidewall", "Person rebuilding defective Tire Sections"],
"Step 7": ["Delay in sidewall stitching", "Lack of raw material"],
"Step 8": ["No person available to load Carcass", "No person available to collect tire"]
}
def analyze_video_step(step_name, observed_time, issues=""):
"""
Analyzes a video step based on its name and observed time.
Parameters:
step_name (str): The name of the step.
observed_time (int): Observed time taken for the step (in seconds).
issues (str): Any specific issues noted during the analysis.
Returns:
str: Analysis result for the provided step.
"""
match step_name:
case "Bead Insertion":
standard_time = 4
analysis = "Missing beads, technician errors, or machinery malfunction.Technician is unavailable at the time of bead insertion."
case "Inner Liner Apply":
standard_time = 4
analysis = "Manual intervention or alignment issues.If technician is manually repairing inner liner."
case "Ply1 Apply":
standard_time = 4
analysis = "Manual adjustment suggesting improper placement or misalignment."
case "Bead Set":
standard_time = 8
analysis = "Bead misalignment, machine pauses, or technician involvement."
case "Turnup":
standard_time = 4
analysis = "Material misalignment or equipment issues."
case "Sidewall Apply":
standard_time = 14
analysis = "Material damage or improper application.Technician repairing sidewall."
case "Sidewall Stitching":
standard_time = 5
analysis = "Machine speed inconsistencies or manual correction."
case "Carcass Unload":
standard_time = 7
analysis = "Absence of technician or delayed involvement.Technician not available to collect tire or load carcass"
case _:
return "Invalid step name. Please provide a valid step name."
if observed_time > standard_time:
return (
f"Step: {step_name}\n"
f"Standard Time: {standard_time} seconds\n"
f"Observed Time: {observed_time} seconds\n"
f"Analysis: Delay detected. Potential issues: {analysis} {issues}"
)
else:
return (
f"Step: {step_name}\n"
f"Standard Time: {standard_time} seconds\n"
f"Observed Time: {observed_time} seconds\n"
"Analysis: Step completed within standard time."
)
def load_video(video_data, strategy='chat'):
"""Loads and processes video data into a format suitable for model input."""
bridge.set_bridge('torch')
num_frames = 24
if isinstance(video_data, str):
decord_vr = VideoReader(video_data, ctx=cpu(0))
else:
decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
frame_id_list = []
total_frames = len(decord_vr)
timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
max_second = round(max(timestamps)) + 1
for second in range(max_second):
closest_num = min(timestamps, key=lambda x: abs(x - second))
index = timestamps.index(closest_num)
frame_id_list.append(index)
if len(frame_id_list) >= num_frames:
break
video_data = decord_vr.get_batch(frame_id_list)
video_data = video_data.permute(3, 0, 1, 2)
return video_data
def load_model():
"""Loads the pre-trained model and tokenizer with quantization configurations."""
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=TORCH_TYPE,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=TORCH_TYPE,
trust_remote_code=True,
quantization_config=quantization_config,
device_map="auto"
).eval()
return model, tokenizer
def predict(prompt, video_data, temperature, model, tokenizer):
"""Generates predictions based on the video and textual prompt."""
video = load_video(video_data, strategy='chat')
inputs = model.build_conversation_input_ids(
tokenizer=tokenizer,
query=prompt,
images=[video],
history=[],
template_version='chat'
)
inputs = {
'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
}
gen_kwargs = {
"max_new_tokens": 2048,
"pad_token_id": 128002,
"top_k": 1,
"do_sample": False,
"top_p": 0.1,
"temperature": temperature,
}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def get_analysis_prompt(step_number, possible_reasons):
"""Constructs the prompt for analyzing delay reasons based on the selected step."""
return f"""You are an AI expert system specialized in analyzing manufacturing processes and identifying production delays in tire manufacturing. Your role is to accurately classify delay reasons based on visual evidence from production line footage.
Task Context:
You are analyzing video footage from Step {step_number} of a tire manufacturing process where a delay has been detected. Your task is to determine the most likely cause of the delay from the following possible reasons:
{', '.join(possible_reasons)}
Required Analysis:
Carefully observe the video for visual cues indicating production interruption.
If no person is visible in any of the frames, the reason probably might be due to his absence.
If a person is visible in the video and is observed touching and modifying the layers of the tire, it means there is a issue with tyre being patched hence he is repairing it.
Compare observed evidence against each possible delay reason.
Select the most likely reason based on visual evidence.
Please provide your analysis in the following format:
1. Selected Reason: [State the most likely reason from the given options]
2. Visual Evidence: [Describe specific visual cues that support your selection]
3. Reasoning: [Explain why this reason best matches the observed evidence]
4. Alternative Analysis: [Brief explanation of why other possible reasons are less likely]
Important: Base your analysis solely on visual evidence from the video. Focus on concrete, observable details rather than assumptions. Clearly state if no person or specific activity is observed."""
model, tokenizer = load_model()
def inference(video, step_number, observed_time, issues=""):
"""Analyzes video and additional step data for delay analysis."""
try:
if not video:
return "Please upload a video first."
possible_reasons = DELAY_REASONS[step_number]
prompt = get_analysis_prompt(step_number, possible_reasons)
temperature = 0.8
video_response = predict(prompt, video, temperature, model, tokenizer)
step_analysis = analyze_video_step(step_number, observed_time, issues)
return f"Video Analysis:\n{video_response}\n\nStep Analysis:\n{step_analysis}"
except Exception as e:
return f"An error occurred during analysis: {str(e)}"
def create_interface():
"""Creates the Gradio interface for the Manufacturing Delay Analysis System with examples."""
with gr.Blocks() as demo:
gr.Markdown("""
# Manufacturing Delay Analysis System
Upload a video of the manufacturing step and select the step number.
The system will analyze the video and determine the most likely cause of delay.
""")
with gr.Row():
with gr.Column():
video = gr.Video(label="Upload Manufacturing Video", sources=["upload"])
step_number = gr.Dropdown(
choices=list(DELAY_REASONS.keys()),
label="Manufacturing Step"
)
analyze_btn = gr.Button("Analyze Delay", variant="primary")
with gr.Column():
output = gr.Textbox(label="Analysis Result", lines=10)
# Add examples
examples = [
["7838_step2_2_eval.mp4", "Step 2"],
["7838_step6_2_eval.mp4", "Step 6"],
["7838_step8_1_eval.mp4", "Step 8"],
["7993_step6_3_eval.mp4", "Step 6"],
["7993_step8_3_eval.mp4", "Step 8"]
]
gr.Examples(
examples=examples,
inputs=[video, step_number],
cache_examples=False
)
analyze_btn.click(
fn=inference,
inputs=[video, step_number],
outputs=[output]
)
return demo
if __name__ == "__main__":
model, tokenizer = load_model()
demo = create_interface()
demo.queue().launch(share=True) |