arjunanand13 commited on
Commit
5ef4c3f
·
verified ·
1 Parent(s): bd5e320

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +182 -0
app.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import io
3
+ import numpy as np
4
+ import torch
5
+ from decord import cpu, VideoReader, bridge
6
+ from transformers import AutoModelForCausalLM, AutoTokenizer
7
+ from transformers import BitsAndBytesConfig
8
+ import json
9
+
10
+ # Model Configuration
11
+ MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
12
+ DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
13
+ TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
14
+
15
+ # Define delay reasons for each step
16
+ DELAY_REASONS = {
17
+ "Step 1": ["No raw material available", "Person repatching the tire"],
18
+ "Step 2": ["Person repatching the tire", "Lack of raw material"],
19
+ "Step 3": ["Person repatching the tire", "Lack of raw material"],
20
+ "Step 4": ["Person repatching the tire", "Lack of raw material"],
21
+ "Step 5": ["Person repatching the tire", "Lack of raw material"],
22
+ "Step 6": ["Person repatching the tire", "Lack of raw material"],
23
+ "Step 7": ["Person repatching the tire", "Lack of raw material"],
24
+ "Step 8": ["No person available to collect tire", "Person repatching the tire"]
25
+ }
26
+
27
+ def load_video(video_data, strategy='chat'):
28
+ bridge.set_bridge('torch')
29
+ mp4_stream = video_data
30
+ num_frames = 24
31
+ decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0))
32
+
33
+ frame_id_list = []
34
+ total_frames = len(decord_vr)
35
+ timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
36
+ max_second = round(max(timestamps)) + 1
37
+
38
+ for second in range(max_second):
39
+ closest_num = min(timestamps, key=lambda x: abs(x - second))
40
+ index = timestamps.index(closest_num)
41
+ frame_id_list.append(index)
42
+ if len(frame_id_list) >= num_frames:
43
+ break
44
+
45
+ video_data = decord_vr.get_batch(frame_id_list)
46
+ video_data = video_data.permute(3, 0, 1, 2)
47
+ return video_data
48
+
49
+ def load_model():
50
+ quantization_config = BitsAndBytesConfig(
51
+ load_in_4bit=True,
52
+ bnb_4bit_compute_dtype=TORCH_TYPE,
53
+ bnb_4bit_use_double_quant=True,
54
+ bnb_4bit_quant_type="nf4"
55
+ )
56
+
57
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
58
+ model = AutoModelForCausalLM.from_pretrained(
59
+ MODEL_PATH,
60
+ torch_dtype=TORCH_TYPE,
61
+ trust_remote_code=True,
62
+ quantization_config=quantization_config,
63
+ device_map="auto"
64
+ ).eval()
65
+
66
+ return model, tokenizer
67
+
68
+ def predict(prompt, video_data, temperature, model, tokenizer):
69
+ video = load_video(video_data, strategy='chat')
70
+
71
+ inputs = model.build_conversation_input_ids(
72
+ tokenizer=tokenizer,
73
+ query=prompt,
74
+ images=[video],
75
+ history=[],
76
+ template_version='chat'
77
+ )
78
+
79
+ inputs = {
80
+ 'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
81
+ 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
82
+ 'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
83
+ 'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
84
+ }
85
+
86
+ gen_kwargs = {
87
+ "max_new_tokens": 2048,
88
+ "pad_token_id": 128002,
89
+ "top_k": 1,
90
+ "do_sample": False,
91
+ "top_p": 0.1,
92
+ "temperature": temperature,
93
+ }
94
+
95
+ with torch.no_grad():
96
+ outputs = model.generate(**inputs, **gen_kwargs)
97
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
98
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
99
+
100
+ return response
101
+
102
+ def get_analysis_prompt(step_number, possible_reasons):
103
+ return f"""Analyze the video of Step {step_number} in the tire manufacturing process.
104
+
105
+ Possible delay reasons for this step are:
106
+ {', '.join(possible_reasons)}
107
+
108
+ Based on the video evidence, determine which of these reasons best explains the delay.
109
+ Please provide:
110
+ 1. Your chosen reason from the list above
111
+ 2. Specific visual evidence supporting this choice
112
+ 3. Brief explanation of why other reasons are less likely
113
+
114
+ Focus your analysis on visual cues that support your conclusion."""
115
+
116
+ def inference(video, step_number, selected_reason):
117
+ if not video:
118
+ return "Please upload a video first."
119
+
120
+ try:
121
+ model, tokenizer = load_model()
122
+ video_data = video.read()
123
+
124
+ # Get possible reasons for the selected step
125
+ possible_reasons = DELAY_REASONS[step_number]
126
+
127
+ # Generate the analysis prompt
128
+ prompt = get_analysis_prompt(step_number, possible_reasons)
129
+
130
+ # Get model prediction
131
+ temperature = 0.8
132
+ response = predict(prompt, video_data, temperature, model, tokenizer)
133
+
134
+ return response
135
+
136
+ except Exception as e:
137
+ return f"An error occurred: {str(e)}"
138
+
139
+ def update_reasons(step):
140
+ """Update the dropdown choices based on the selected step"""
141
+ return gr.Dropdown(choices=DELAY_REASONS[step])
142
+
143
+ # Gradio Interface
144
+ def create_interface():
145
+ with gr.Blocks() as demo:
146
+ with gr.Row():
147
+ with gr.Column():
148
+ video = gr.Video(label="Upload Manufacturing Video", sources=["upload"])
149
+ step_number = gr.Dropdown(
150
+ choices=list(DELAY_REASONS.keys()),
151
+ label="Manufacturing Step",
152
+ value="Step 1"
153
+ )
154
+ reason = gr.Dropdown(
155
+ choices=DELAY_REASONS["Step 1"],
156
+ label="Select Delay Reason",
157
+ value=DELAY_REASONS["Step 1"][0]
158
+ )
159
+ analyze_btn = gr.Button("Analyze Delay", variant="primary")
160
+
161
+ with gr.Column():
162
+ output = gr.Textbox(label="Analysis Result", lines=10)
163
+
164
+ # Update reasons when step changes
165
+ step_number.change(
166
+ fn=update_reasons,
167
+ inputs=[step_number],
168
+ outputs=[reason]
169
+ )
170
+
171
+ # Trigger analysis when button is clicked
172
+ analyze_btn.click(
173
+ fn=inference,
174
+ inputs=[video, step_number, reason],
175
+ outputs=[output]
176
+ )
177
+
178
+ return demo
179
+
180
+ if __name__ == "__main__":
181
+ demo = create_interface()
182
+ demo.launch()