VishalD1234 commited on
Commit
a702daa
·
verified ·
1 Parent(s): aa38c1f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -50
app.py CHANGED
@@ -6,23 +6,76 @@ from decord import cpu, VideoReader, bridge
6
  from transformers import AutoModelForCausalLM, AutoTokenizer
7
  from transformers import BitsAndBytesConfig
8
 
9
-
10
  MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
11
  DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
12
  TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
13
 
14
-
15
  DELAY_REASONS = {
16
- "Step 1": ["Delay in Bead Insertion","Lack of raw material"],
17
- "Step 2": ["Inner Liner Adjustment by Technician","Person rebuilding defective Tire Sections"],
18
- "Step 3": ["Manual Adjustment in Ply1 apply","Technician repairing defective Tire Sections"],
19
- "Step 4": ["Delay in Bead set","Lack of raw material"],
20
- "Step 5": ["Delay in Turnup","Lack of raw material"],
21
- "Step 6": ["Person Repairing sidewall","Person rebuilding defective Tire Sections"],
22
- "Step 7": ["Delay in sidewall stitching","Lack of raw material"],
23
- "Step 8": ["No person available to load Carcass","No person available to collect tire"]
24
  }
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  def load_video(video_data, strategy='chat'):
27
  """Loads and processes video data into a format suitable for model input."""
28
  bridge.set_bridge('torch')
@@ -111,24 +164,14 @@ Task Context:
111
  You are analyzing video footage from Step {step_number} of a tire manufacturing process where a delay has been detected. Your task is to determine the most likely cause of the delay from the following possible reasons:
112
  {', '.join(possible_reasons)}
113
  Required Analysis:
114
- Carefully observe the video for visual cues indicating production interruption.
115
- If no person is visible in any of the frames, the reason probably might be due to his absence.
116
- If a person is visible in the video and is observed touching and modifying the layers of the tire, it means there is a issue with tyre being patched hence he is repairing it.
117
- Compare observed evidence against each possible delay reason.
118
- Select the most likely reason based on visual evidence.
119
- Please provide your analysis in the following format:
120
- 1. Selected Reason: [State the most likely reason from the given options]
121
- 2. Visual Evidence: [Describe specific visual cues that support your selection]
122
- 3. Reasoning: [Explain why this reason best matches the observed evidence]
123
- 4. Alternative Analysis: [Brief explanation of why other possible reasons are less likely]
124
- Important: Base your analysis solely on visual evidence from the video. Focus on concrete, observable details rather than assumptions. Clearly state if no person or specific activity is observed."""
125
 
126
-
127
- # Load model globally
128
- model, tokenizer = load_model()
129
-
130
- def inference(video, step_number):
131
- """Analyzes video to predict the most likely cause of delay in the selected manufacturing step."""
132
  try:
133
  if not video:
134
  return "Please upload a video first."
@@ -136,18 +179,19 @@ def inference(video, step_number):
136
  possible_reasons = DELAY_REASONS[step_number]
137
  prompt = get_analysis_prompt(step_number, possible_reasons)
138
  temperature = 0.8
139
- response = predict(prompt, video, temperature, model, tokenizer)
 
140
 
141
- return response
142
  except Exception as e:
143
  return f"An error occurred during analysis: {str(e)}"
144
 
145
  def create_interface():
146
- """Creates the Gradio interface for the Manufacturing Delay Analysis System with examples."""
147
  with gr.Blocks() as demo:
148
  gr.Markdown("""
149
  # Manufacturing Delay Analysis System
150
- Upload a video of the manufacturing step and select the step number.
151
  The system will analyze the video and determine the most likely cause of delay.
152
  """)
153
 
@@ -158,36 +202,22 @@ def create_interface():
158
  choices=list(DELAY_REASONS.keys()),
159
  label="Manufacturing Step"
160
  )
 
 
161
  analyze_btn = gr.Button("Analyze Delay", variant="primary")
162
 
163
  with gr.Column():
164
  output = gr.Textbox(label="Analysis Result", lines=10)
165
 
166
- # Add examples
167
- examples = [
168
- ["7838_step2_2_eval.mp4", "Step 2"],
169
- ["7838_step6_2_eval.mp4", "Step 6"],
170
- ["7838_step8_1_eval.mp4", "Step 8"],
171
- ["7993_step6_3_eval.mp4", "Step 6"],
172
- ["7993_step8_3_eval.mp4", "Step 8"]
173
-
174
- ]
175
-
176
- gr.Examples(
177
- examples=examples,
178
- inputs=[video, step_number],
179
- cache_examples=False
180
- )
181
-
182
  analyze_btn.click(
183
  fn=inference,
184
- inputs=[video, step_number],
185
  outputs=[output]
186
  )
187
 
188
  return demo
189
 
190
  if __name__ == "__main__":
 
191
  demo = create_interface()
192
- demo.queue().launch(share=True)
193
-
 
6
  from transformers import AutoModelForCausalLM, AutoTokenizer
7
  from transformers import BitsAndBytesConfig
8
 
 
9
  MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
10
  DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
11
  TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
12
 
 
13
  DELAY_REASONS = {
14
+ "Step 1": ["Delay in Bead Insertion", "Lack of raw material"],
15
+ "Step 2": ["Inner Liner Adjustment by Technician", "Person rebuilding defective Tire Sections"],
16
+ "Step 3": ["Manual Adjustment in Ply1 apply", "Technician repairing defective Tire Sections"],
17
+ "Step 4": ["Delay in Bead set", "Lack of raw material"],
18
+ "Step 5": ["Delay in Turnup", "Lack of raw material"],
19
+ "Step 6": ["Person Repairing sidewall", "Person rebuilding defective Tire Sections"],
20
+ "Step 7": ["Delay in sidewall stitching", "Lack of raw material"],
21
+ "Step 8": ["No person available to load Carcass", "No person available to collect tire"]
22
  }
23
 
24
+ def analyze_video_step(step_name, observed_time, issues=""):
25
+ """
26
+ Analyzes a video step based on its name and observed time.
27
+
28
+ Parameters:
29
+ step_name (str): The name of the step.
30
+ observed_time (int): Observed time taken for the step (in seconds).
31
+ issues (str): Any specific issues noted during the analysis.
32
+
33
+ Returns:
34
+ str: Analysis result for the provided step.
35
+ """
36
+ match step_name:
37
+ case "Bead Insertion":
38
+ standard_time = 4
39
+ analysis = "Missing beads, technician errors, or machinery malfunction.Technician is unavailable at the time of bead insertion."
40
+ case "Inner Liner Apply":
41
+ standard_time = 4
42
+ analysis = "Manual intervention or alignment issues.If technician is manually repairing inner liner."
43
+ case "Ply1 Apply":
44
+ standard_time = 4
45
+ analysis = "Manual adjustment suggesting improper placement or misalignment."
46
+ case "Bead Set":
47
+ standard_time = 8
48
+ analysis = "Bead misalignment, machine pauses, or technician involvement."
49
+ case "Turnup":
50
+ standard_time = 4
51
+ analysis = "Material misalignment or equipment issues."
52
+ case "Sidewall Apply":
53
+ standard_time = 14
54
+ analysis = "Material damage or improper application.Technician repairing sidewall."
55
+ case "Sidewall Stitching":
56
+ standard_time = 5
57
+ analysis = "Machine speed inconsistencies or manual correction."
58
+ case "Carcass Unload":
59
+ standard_time = 7
60
+ analysis = "Absence of technician or delayed involvement.Technician not available to collect tire or load carcass"
61
+ case _:
62
+ return "Invalid step name. Please provide a valid step name."
63
+
64
+ if observed_time > standard_time:
65
+ return (
66
+ f"Step: {step_name}\n"
67
+ f"Standard Time: {standard_time} seconds\n"
68
+ f"Observed Time: {observed_time} seconds\n"
69
+ f"Analysis: Delay detected. Potential issues: {analysis} {issues}"
70
+ )
71
+ else:
72
+ return (
73
+ f"Step: {step_name}\n"
74
+ f"Standard Time: {standard_time} seconds\n"
75
+ f"Observed Time: {observed_time} seconds\n"
76
+ "Analysis: Step completed within standard time."
77
+ )
78
+
79
  def load_video(video_data, strategy='chat'):
80
  """Loads and processes video data into a format suitable for model input."""
81
  bridge.set_bridge('torch')
 
164
  You are analyzing video footage from Step {step_number} of a tire manufacturing process where a delay has been detected. Your task is to determine the most likely cause of the delay from the following possible reasons:
165
  {', '.join(possible_reasons)}
166
  Required Analysis:
167
+ - Carefully observe the video for visual cues indicating production interruption.
168
+ - If no person is visible in any of the frames, the reason probably might be due to their absence.
169
+ - If a person is visible in the video and is observed touching and modifying the layers of the tire, it means there is an issue with the tire being patched, hence they are repairing it.
170
+ Compare observed evidence against each possible delay reason.
171
+ """
 
 
 
 
 
 
172
 
173
+ def inference(video, step_number, observed_time, issues=""):
174
+ """Analyzes video and additional step data for delay analysis."""
 
 
 
 
175
  try:
176
  if not video:
177
  return "Please upload a video first."
 
179
  possible_reasons = DELAY_REASONS[step_number]
180
  prompt = get_analysis_prompt(step_number, possible_reasons)
181
  temperature = 0.8
182
+ video_response = predict(prompt, video, temperature, model, tokenizer)
183
+ step_analysis = analyze_video_step(step_number, observed_time, issues)
184
 
185
+ return f"Video Analysis:\n{video_response}\n\nStep Analysis:\n{step_analysis}"
186
  except Exception as e:
187
  return f"An error occurred during analysis: {str(e)}"
188
 
189
  def create_interface():
190
+ """Creates the Gradio interface for the Manufacturing Delay Analysis System."""
191
  with gr.Blocks() as demo:
192
  gr.Markdown("""
193
  # Manufacturing Delay Analysis System
194
+ Upload a video of the manufacturing step, input observed time, and note specific issues.
195
  The system will analyze the video and determine the most likely cause of delay.
196
  """)
197
 
 
202
  choices=list(DELAY_REASONS.keys()),
203
  label="Manufacturing Step"
204
  )
205
+ observed_time = gr.Number(label="Observed Time (seconds)")
206
+ issues = gr.Textbox(label="Specific Issues (optional)")
207
  analyze_btn = gr.Button("Analyze Delay", variant="primary")
208
 
209
  with gr.Column():
210
  output = gr.Textbox(label="Analysis Result", lines=10)
211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212
  analyze_btn.click(
213
  fn=inference,
214
+ inputs=[video, step_number, observed_time, issues],
215
  outputs=[output]
216
  )
217
 
218
  return demo
219
 
220
  if __name__ == "__main__":
221
+ model, tokenizer = load_model()
222
  demo = create_interface()
223
+ demo.queue().launch(share=True)