Spaces:
Runtime error
Runtime error
File size: 16,852 Bytes
077ae35 23adf2a 077ae35 33101ab 077ae35 d064df9 077ae35 6051509 495550d 6051509 495550d 6051509 33101ab 495550d 33101ab 6051509 33101ab 6051509 495550d 6051509 33101ab 6051509 495550d 6051509 495550d 6051509 495550d 33101ab 667a64e 33101ab 667a64e 33101ab 495550d 33101ab 495550d 667a64e 6b8495c 667a64e 33101ab 667a64e 33101ab 667a64e 33101ab 667a64e 33101ab 495550d 667a64e 33101ab 667a64e 495550d 667a64e 33101ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import gradio as gr
import io
import numpy as np
import torch
from decord import cpu, VideoReader, bridge
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig
MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
# Delay Reasons for Each Manufacturing Step
DELAY_REASONS = {
"Step 1": ["Delay in Bead Insertion", "Lack of raw material"],
"Step 2": ["Inner Liner Adjustment by Technician", "Person rebuilding defective Tire Sections"],
"Step 3": ["Manual Adjustment in Ply1 apply", "Technician repairing defective Tire Sections"],
"Step 4": ["Delay in Bead set", "Lack of raw material"],
"Step 5": ["Delay in Turnup", "Lack of raw material"],
"Step 6": ["Person Repairing sidewall", "Person rebuilding defective Tire Sections"],
"Step 7": ["Delay in sidewall stitching", "Lack of raw material"],
"Step 8": ["No person available to load Carcass", "No person available to collect tire"]
}
def get_step_info(step_number):
"""Returns detailed information about a manufacturing step."""
step_details = {
1: {
"Name": "Bead Insertion",
"Standard Time": "4 seconds",
"Video_substeps_expected": {
"0-1 second": "Machine starts bead insertion process.",
"1-3 seconds": "Beads are aligned and positioned.",
"3-4 seconds": "Final adjustment and confirmation of bead placement."
},
"Potential_Delay_Reasons": [
"Delay in bead insertion",
"Lack of raw material",
"Machine malfunction during bead alignment"
]
},
2: {
"Name": "Inner Liner Apply",
"Standard Time": "4 seconds",
"Video_substeps_expected": {
"0-1 second": "Machine applies the first layer of the liner.",
"1-3 seconds": "Technician checks alignment and adjusts if needed.",
"3-4 seconds": "Final inspection and confirmation."
},
"Potential_Delay_Reasons": [
"Technician adjusting inner liner alignment",
"Person rebuilding defective tire sections",
"Machine alignment issues"
]
},
3: {
"Name": "Ply1 Apply",
"Standard Time": "4 seconds",
"Video_substeps_expected": {
"0-2 seconds": "First ply is loaded onto the machine.",
"2-4 seconds": "Technician inspects and adjusts ply placement."
},
"Potential_Delay_Reasons": [
"Manual adjustment of ply placement",
"Technician repairing defective ply sections",
"Ply loading issues"
]
},
4: {
"Name": "Bead Set",
"Standard Time": "8 seconds",
"Video_substeps_expected": {
"0-3 seconds": "Bead is positioned and pre-set.",
"3-6 seconds": "Machine secures the bead in place.",
"6-8 seconds": "Technician confirms the bead alignment."
},
"Potential_Delay_Reasons": [
"Delay in bead positioning",
"Lack of raw material",
"Machine securing process failure"
]
},
5: {
"Name": "Turnup",
"Standard Time": "4 seconds",
"Video_substeps_expected": {
"0-2 seconds": "Turnup process begins with machine handling.",
"2-4 seconds": "Technician inspects the turnup and makes adjustments if necessary."
},
"Potential_Delay_Reasons": [
"Delay in turnup handling",
"Lack of raw material",
"Technician adjustment delays"
]
},
6: {
"Name": "Sidewall Apply",
"Standard Time": "14 seconds",
"Video_substeps_expected": {
"0-5 seconds": "Sidewall material is positioned by the machine.",
"5-10 seconds": "Technician checks for alignment and begins application.",
"10-14 seconds": "Final adjustments and confirmation of sidewall placement."
},
"Potential_Delay_Reasons": [
"Person repairing sidewall",
"Person rebuilding defective tire sections",
"Sidewall positioning issues"
]
},
7: {
"Name": "Sidewall Stitching",
"Standard Time": "5 seconds",
"Video_substeps_expected": {
"0-2 seconds": "Stitching process begins automatically.",
"2-4 seconds": "Technician inspects stitching for any irregularities.",
"4-5 seconds": "Machine completes stitching process."
},
"Potential_Delay_Reasons": [
"Delay in stitching process",
"Technician repairing stitching irregularities",
"Machine stitching malfunction"
]
},
8: {
"Name": "Carcass Unload",
"Standard Time": "7 seconds",
"Video_substeps_expected": {
"0-3 seconds": "Technician unloads(removes) carcass(tire) from the machine."
},
"Potential_Delay_reasons": [
"Person not available in time(in 3 sec) to remove carcass.",
"Person is doing bead(ring) insertion before carcass unload causing unload to be delayed by more than 3 sec"
]
}
}
return step_details.get(step_number, {"Error": "Invalid step number. Please provide a valid step number."})
def load_video(video_data, strategy='chat'):
"""Loads and processes video data into a format suitable for model input."""
bridge.set_bridge('torch')
num_frames = 24
if isinstance(video_data, str):
decord_vr = VideoReader(video_data, ctx=cpu(0))
else:
decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
frame_id_list = []
total_frames = len(decord_vr)
timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
max_second = round(max(timestamps)) + 1
for second in range(max_second):
closest_num = min(timestamps, key=lambda x: abs(x - second))
index = timestamps.index(closest_num)
frame_id_list.append(index)
if len(frame_id_list) >= num_frames:
break
video_data = decord_vr.get_batch(frame_id_list)
video_data = video_data.permute(3, 0, 1, 2)
return video_data
def load_model():
"""Loads the pre-trained model and tokenizer with quantization configurations."""
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=TORCH_TYPE,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=TORCH_TYPE,
trust_remote_code=True,
quantization_config=quantization_config,
device_map="auto"
).eval()
return model, tokenizer
def predict(prompt, video_data, temperature, model, tokenizer):
"""Generates predictions based on the video and textual prompt."""
video = load_video(video_data, strategy='chat')
inputs = model.build_conversation_input_ids(
tokenizer=tokenizer,
query=prompt,
images=[video],
history=[],
template_version='chat'
)
inputs = {
'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
}
gen_kwargs = {
"max_new_tokens": 2048,
"pad_token_id": 128002,
"top_k": 1,
"do_sample": False,
"top_p": 0.1,
"temperature": temperature,
}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def get_analysis_prompt(step_number):
"""Constructs the prompt for analyzing delay reasons based on the selected step."""
step_info = get_step_info(step_number)
if "Error" in step_info:
return step_info["Error"]
step_name = step_info["Name"]
standard_time = step_info["Standard Time"]
analysis = step_info["Analysis"]
return f"""
You are an AI expert system specialized in analyzing manufacturing processes and identifying production delays in tire manufacturing. Your role is to accurately classify delay reasons based on visual evidence from production line footage.
Task Context:
You are analyzing video footage from Step {step_number} of a tire manufacturing process where a delay has been detected. The step is called {step_name}, and its standard time is {standard_time}.
Required Analysis:
Carefully observe the video for visual cues indicating production interruption.
- If no person is visible in any of the frames, the reason probably might be due to their absence.
- If a person is visible in the video and is observed touching and modifying the layers of the tire, it indicates an issue with tire patching, and the person might be repairing it.
- Compare observed evidence against the following possible delay reasons:
- {analysis}
Following are the subactivities needs to happen in this step.
{get_step_info(step_number)}
Please provide your output in the following format:
Output_Examples = {
["Delay in Bead Insertion", "Lack of raw material"],
["Inner Liner Adjustment by Technician", "Person rebuilding defective Tire Sections"],
["Manual Adjustment in Ply1 Apply", "Technician repairing defective Tire Sections"],
["Delay in Bead Set", "Lack of raw material"],
["Delay in Turnup", "Lack of raw material"],
["Person Repairing Sidewall", "Person rebuilding defective Tire Sections"],
["Delay in Sidewall Stitching", "Lack of raw material"],
["No person available to load Carcass", "No person available to collect tire"]
}
1. **Selected Reason:** [State the most likely reason from the given options]
2. **Visual Evidence:** [Describe specific visual cues that support your selection]
3. **Reasoning:** [Explain why this reason best matches the observed evidence]
4. **Alternative Analysis:** [Brief explanation of why other possible reasons are less likely]
Important: Base your analysis solely on visual evidence from the video. Focus on concrete, observable details rather than assumptions. Clearly state if no person or specific activity is observed.
"""
model, tokenizer = load_model()
def inference(video, step_number):
"""Analyzes video to predict possible issues based on the manufacturing step."""
try:
if not video:
return "Please upload a video first."
prompt = get_analysis_prompt(step_number)
temperature = 0.3
response = predict(prompt, video, temperature, model, tokenizer)
return response
except Exception as e:
return f"An error occurred during analysis: {str(e)}"
def create_interface():
"""Creates the Gradio interface for the Manufacturing Analysis System."""
with gr.Blocks() as demo:
gr.Markdown("""
# Manufacturing Analysis System
Upload a video of the manufacturing step and select the step number.
The system will analyze the video and provide observations.
""")
with gr.Row():
with gr.Column():
video = gr.Video(label="Upload Manufacturing Video", sources=["upload"])
step_number = gr.Dropdown(
choices=[f"Step {i}" for i in range(1, 9)],
label="Manufacturing Step"
)
analyze_btn = gr.Button("Analyze", variant="primary")
with gr.Column():
output = gr.Textbox(label="Analysis Result", lines=10)
gr.Examples(
examples=[
["7838_step2_2_eval.mp4", "Step 2"],
["7838_step6_2_eval.mp4", "Step 6"],
["7838_step8_1_eval.mp4", "Step 8"],
["7993_step6_3_eval.mp4", "Step 6"],
["7993_step8_3_eval.mp4", "Step 8"]
],
inputs=[video, step_number],
cache_examples=False
)
analyze_btn.click(
fn=inference,
inputs=[video, step_number],
outputs=[output]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.queue().launch(share=True)import gradio as gr
import torch
import numpy as np
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
MODEL_PATH = "THUDM/cogvlm2-video-llama3-chat"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
def load_model():
"""Loads the pre-trained model and tokenizer with quantization configurations."""
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=TORCH_TYPE,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=TORCH_TYPE,
trust_remote_code=True,
quantization_config=quantization_config,
device_map="auto"
).eval()
return model, tokenizer
def predict_image(prompt, image, temperature, model, tokenizer):
"""Generates predictions based on the image and textual prompt."""
image = image.convert("RGB") # Ensure image is in RGB format
# Convert image to model-expected format
inputs = model.build_conversation_input_ids(
tokenizer=tokenizer,
query=prompt,
images=[image],
history=[],
template_version='chat'
)
inputs = {
'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
}
gen_kwargs = {
"max_new_tokens": 512,
"pad_token_id": 128002,
"top_k": 1,
"do_sample": False,
"top_p": 0.1,
"temperature": temperature,
}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
model, tokenizer = load_model()
def inference(image):
"""Generates a description of the input image."""
try:
if not image:
return "Please upload an image first."
prompt = "Describe the image and the components observed in the given input image."
temperature = 0.3
response = predict_image(prompt, image, temperature, model, tokenizer)
return response
except Exception as e:
return f"An error occurred during analysis: {str(e)}"
def create_interface():
"""Creates the Gradio interface for Image Description System."""
with gr.Blocks() as demo:
gr.Markdown("""
# Image Description System
Upload an image, and the system will describe the image and its components.
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload Image", type="pil")
analyze_btn = gr.Button("Describe Image", variant="primary")
with gr.Column():
output = gr.Textbox(label="Image Description", lines=10)
analyze_btn.click(
fn=inference,
inputs=[image_input],
outputs=[output]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.queue().launch(share=True)
|