VishalD1234 commited on
Commit
6b8495c
·
verified ·
1 Parent(s): 73a629c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -30
app.py CHANGED
@@ -6,10 +6,12 @@ from decord import cpu, VideoReader, bridge
6
  from transformers import AutoModelForCausalLM, AutoTokenizer
7
  from transformers import BitsAndBytesConfig
8
 
9
- MODEL_PATH = "THUDM/cogvlm2-video-llama3-chat"
10
  DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
11
  TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
12
 
 
 
13
  def get_step_info(step_number):
14
  """Returns detailed information about a manufacturing step."""
15
  step_details = {
@@ -20,7 +22,12 @@ def get_step_info(step_number):
20
  "0-1 second": "Machine starts bead insertion process.",
21
  "1-3 seconds": "Beads are aligned and positioned.",
22
  "3-4 seconds": "Final adjustment and confirmation of bead placement."
23
- }
 
 
 
 
 
24
  },
25
  2: {
26
  "Name": "Inner Liner Apply",
@@ -29,7 +36,12 @@ def get_step_info(step_number):
29
  "0-1 second": "Machine applies the first layer of the liner.",
30
  "1-3 seconds": "Technician checks alignment and adjusts if needed.",
31
  "3-4 seconds": "Final inspection and confirmation."
32
- }
 
 
 
 
 
33
  },
34
  3: {
35
  "Name": "Ply1 Apply",
@@ -37,7 +49,12 @@ def get_step_info(step_number):
37
  "Video_substeps_expected": {
38
  "0-2 seconds": "First ply is loaded onto the machine.",
39
  "2-4 seconds": "Technician inspects and adjusts ply placement."
40
- }
 
 
 
 
 
41
  },
42
  4: {
43
  "Name": "Bead Set",
@@ -46,7 +63,12 @@ def get_step_info(step_number):
46
  "0-3 seconds": "Bead is positioned and pre-set.",
47
  "3-6 seconds": "Machine secures the bead in place.",
48
  "6-8 seconds": "Technician confirms the bead alignment."
49
- }
 
 
 
 
 
50
  },
51
  5: {
52
  "Name": "Turnup",
@@ -54,7 +76,12 @@ def get_step_info(step_number):
54
  "Video_substeps_expected": {
55
  "0-2 seconds": "Turnup process begins with machine handling.",
56
  "2-4 seconds": "Technician inspects the turnup and makes adjustments if necessary."
57
- }
 
 
 
 
 
58
  },
59
  6: {
60
  "Name": "Sidewall Apply",
@@ -63,7 +90,12 @@ def get_step_info(step_number):
63
  "0-5 seconds": "Sidewall material is positioned by the machine.",
64
  "5-10 seconds": "Technician checks for alignment and begins application.",
65
  "10-14 seconds": "Final adjustments and confirmation of sidewall placement."
66
- }
 
 
 
 
 
67
  },
68
  7: {
69
  "Name": "Sidewall Stitching",
@@ -72,19 +104,30 @@ def get_step_info(step_number):
72
  "0-2 seconds": "Stitching process begins automatically.",
73
  "2-4 seconds": "Technician inspects stitching for any irregularities.",
74
  "4-5 seconds": "Machine completes stitching process."
75
- }
 
 
 
 
 
76
  },
77
  8: {
78
  "Name": "Carcass Unload",
79
  "Standard Time": "7 seconds",
80
  "Video_substeps_expected": {
81
  "0-3 seconds": "Technician unloads(removes) carcass(tire) from the machine."
82
- }
 
 
 
 
83
  }
84
  }
85
 
86
  return step_details.get(step_number, {"Error": "Invalid step number. Please provide a valid step number."})
87
 
 
 
88
  def load_video(video_data, strategy='chat'):
89
  """Loads and processes video data into a format suitable for model input."""
90
  bridge.set_bridge('torch')
@@ -166,46 +209,67 @@ def predict(prompt, video_data, temperature, model, tokenizer):
166
 
167
  return response
168
 
169
- def get_analysis_prompt(step_number, possible_reasons):
170
  """Constructs the prompt for analyzing delay reasons based on the selected step."""
171
- return f"""You are an AI expert system specialized in analyzing manufacturing processes and identifying production delays in tire manufacturing. Your role is to accurately classify delay reasons based on visual evidence from production line footage.
 
 
 
 
 
 
 
 
 
 
172
  Task Context:
173
- You are analyzing video footage from Step {step_number} of a tire manufacturing process where a delay has been detected. Your task is to determine the most likely cause of the delay from the following possible reasons:
174
- {', '.join(possible_reasons)}
 
 
 
 
 
 
175
 
176
  {get_step_info(step_number)}
177
 
178
- Required Analysis:
179
- Carefully observe the video for visual cues indicating production interruption.
180
- If no person is visible in any of the frames, the reason probably might be due to his absence.
181
- If a person is visible in the video and is observed touching and modifying the layers of the tire, it means there is a issue with tyre being patched hence he is repairing it.
182
- Compare observed evidence against each possible delay reason.
183
- Select the most likely reason based on visual evidence.
184
- Please provide your analysis in the following format:
185
- 1. Selected Reason: [State the most likely reason from the given options]
186
- 2. Visual Evidence: [Describe specific visual cues that support your selection]
187
- 3. Reasoning: [Explain why this reason best matches the observed evidence]
188
- 4. Alternative Analysis: [Brief explanation of why other possible reasons are less likely]
189
- Important: Base your analysis solely on visual evidence from the video. Focus on concrete, observable details rather than assumptions. Clearly state if no person or specific activity is observed."""
 
 
 
 
 
 
190
 
191
 
192
  model, tokenizer = load_model()
193
 
194
  def inference(video, step_number):
195
- """Analyzes video to predict the most likely cause of delay in the selected manufacturing step."""
196
  try:
197
  if not video:
198
  return "Please upload a video first."
199
 
200
- possible_reasons = DELAY_REASONS[step_number]
201
- prompt = get_analysis_prompt(step_number, possible_reasons)
202
  temperature = 0.3
203
  response = predict(prompt, video, temperature, model, tokenizer)
204
 
205
  return response
206
  except Exception as e:
207
  return f"An error occurred during analysis: {str(e)}"
208
-
209
  def create_interface():
210
  """Creates the Gradio interface for the Manufacturing Analysis System."""
211
  with gr.Blocks() as demo:
@@ -249,4 +313,4 @@ def create_interface():
249
 
250
  if __name__ == "__main__":
251
  demo = create_interface()
252
- demo.queue().launch(share=True)
 
6
  from transformers import AutoModelForCausalLM, AutoTokenizer
7
  from transformers import BitsAndBytesConfig
8
 
9
+ MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
10
  DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
11
  TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
12
 
13
+
14
+
15
  def get_step_info(step_number):
16
  """Returns detailed information about a manufacturing step."""
17
  step_details = {
 
22
  "0-1 second": "Machine starts bead insertion process.",
23
  "1-3 seconds": "Beads are aligned and positioned.",
24
  "3-4 seconds": "Final adjustment and confirmation of bead placement."
25
+ },
26
+ "Potential_Delay_Reasons": [
27
+ "Delay in bead insertion",
28
+ "Lack of raw material",
29
+ "Machine malfunction during bead alignment"
30
+ ]
31
  },
32
  2: {
33
  "Name": "Inner Liner Apply",
 
36
  "0-1 second": "Machine applies the first layer of the liner.",
37
  "1-3 seconds": "Technician checks alignment and adjusts if needed.",
38
  "3-4 seconds": "Final inspection and confirmation."
39
+ },
40
+ "Potential_Delay_Reasons": [
41
+ "Technician adjusting inner liner alignment",
42
+ "Person rebuilding defective tire sections",
43
+ "Machine alignment issues"
44
+ ]
45
  },
46
  3: {
47
  "Name": "Ply1 Apply",
 
49
  "Video_substeps_expected": {
50
  "0-2 seconds": "First ply is loaded onto the machine.",
51
  "2-4 seconds": "Technician inspects and adjusts ply placement."
52
+ },
53
+ "Potential_Delay_Reasons": [
54
+ "Manual adjustment of ply placement",
55
+ "Technician repairing defective ply sections",
56
+ "Ply loading issues"
57
+ ]
58
  },
59
  4: {
60
  "Name": "Bead Set",
 
63
  "0-3 seconds": "Bead is positioned and pre-set.",
64
  "3-6 seconds": "Machine secures the bead in place.",
65
  "6-8 seconds": "Technician confirms the bead alignment."
66
+ },
67
+ "Potential_Delay_Reasons": [
68
+ "Delay in bead positioning",
69
+ "Lack of raw material",
70
+ "Machine securing process failure"
71
+ ]
72
  },
73
  5: {
74
  "Name": "Turnup",
 
76
  "Video_substeps_expected": {
77
  "0-2 seconds": "Turnup process begins with machine handling.",
78
  "2-4 seconds": "Technician inspects the turnup and makes adjustments if necessary."
79
+ },
80
+ "Potential_Delay_Reasons": [
81
+ "Delay in turnup handling",
82
+ "Lack of raw material",
83
+ "Technician adjustment delays"
84
+ ]
85
  },
86
  6: {
87
  "Name": "Sidewall Apply",
 
90
  "0-5 seconds": "Sidewall material is positioned by the machine.",
91
  "5-10 seconds": "Technician checks for alignment and begins application.",
92
  "10-14 seconds": "Final adjustments and confirmation of sidewall placement."
93
+ },
94
+ "Potential_Delay_Reasons": [
95
+ "Person repairing sidewall",
96
+ "Person rebuilding defective tire sections",
97
+ "Sidewall positioning issues"
98
+ ]
99
  },
100
  7: {
101
  "Name": "Sidewall Stitching",
 
104
  "0-2 seconds": "Stitching process begins automatically.",
105
  "2-4 seconds": "Technician inspects stitching for any irregularities.",
106
  "4-5 seconds": "Machine completes stitching process."
107
+ },
108
+ "Potential_Delay_Reasons": [
109
+ "Delay in stitching process",
110
+ "Technician repairing stitching irregularities",
111
+ "Machine stitching malfunction"
112
+ ]
113
  },
114
  8: {
115
  "Name": "Carcass Unload",
116
  "Standard Time": "7 seconds",
117
  "Video_substeps_expected": {
118
  "0-3 seconds": "Technician unloads(removes) carcass(tire) from the machine."
119
+ },
120
+ "Potential_Delay_reasons": [
121
+ "Person not available in time(in 3 sec) to remove carcass.",
122
+ "Person is doing bead(ring) insertion before carcass unload causing unload to be delayed by more than 3 sec"
123
+ ]
124
  }
125
  }
126
 
127
  return step_details.get(step_number, {"Error": "Invalid step number. Please provide a valid step number."})
128
 
129
+
130
+
131
  def load_video(video_data, strategy='chat'):
132
  """Loads and processes video data into a format suitable for model input."""
133
  bridge.set_bridge('torch')
 
209
 
210
  return response
211
 
212
+ def get_analysis_prompt(step_number):
213
  """Constructs the prompt for analyzing delay reasons based on the selected step."""
214
+ step_info = get_step_info(step_number)
215
+
216
+ if "Error" in step_info:
217
+ return step_info["Error"]
218
+
219
+ step_name = step_info["Name"]
220
+ standard_time = step_info["Standard Time"]
221
+ analysis = step_info["Analysis"]
222
+
223
+ return f"""
224
+ You are an AI expert system specialized in analyzing manufacturing processes and identifying production delays in tire manufacturing. Your role is to accurately classify delay reasons based on visual evidence from production line footage.
225
  Task Context:
226
+ You are analyzing video footage from Step {step_number} of a tire manufacturing process where a delay has been detected. The step is called {step_name}, and its standard time is {standard_time}.
227
+ Required Analysis:
228
+ Carefully observe the video for visual cues indicating production interruption.
229
+ - If no person is visible in any of the frames, the reason probably might be due to their absence.
230
+ - If a person is visible in the video and is observed touching and modifying the layers of the tire, it indicates an issue with tire patching, and the person might be repairing it.
231
+ - Compare observed evidence against the following possible delay reasons:
232
+ - {analysis}
233
+ Following are the subactivities needs to happen in this step.
234
 
235
  {get_step_info(step_number)}
236
 
237
+ Please provide your output in the following format:
238
+ Output_Examples = {
239
+ ["Delay in Bead Insertion", "Lack of raw material"],
240
+ ["Inner Liner Adjustment by Technician", "Person rebuilding defective Tire Sections"],
241
+ ["Manual Adjustment in Ply1 Apply", "Technician repairing defective Tire Sections"],
242
+ ["Delay in Bead Set", "Lack of raw material"],
243
+ ["Delay in Turnup", "Lack of raw material"],
244
+ ["Person Repairing Sidewall", "Person rebuilding defective Tire Sections"],
245
+ ["Delay in Sidewall Stitching", "Lack of raw material"],
246
+ ["No person available to load Carcass", "No person available to collect tire"]
247
+ }
248
+ 1. **Selected Reason:** [State the most likely reason from the given options]
249
+ 2. **Visual Evidence:** [Describe specific visual cues that support your selection]
250
+ 3. **Reasoning:** [Explain why this reason best matches the observed evidence]
251
+ 4. **Alternative Analysis:** [Brief explanation of why other possible reasons are less likely]
252
+ Important: Base your analysis solely on visual evidence from the video. Focus on concrete, observable details rather than assumptions. Clearly state if no person or specific activity is observed.
253
+ """
254
+
255
 
256
 
257
  model, tokenizer = load_model()
258
 
259
  def inference(video, step_number):
260
+ """Analyzes video to predict possible issues based on the manufacturing step."""
261
  try:
262
  if not video:
263
  return "Please upload a video first."
264
 
265
+ prompt = get_analysis_prompt(step_number)
 
266
  temperature = 0.3
267
  response = predict(prompt, video, temperature, model, tokenizer)
268
 
269
  return response
270
  except Exception as e:
271
  return f"An error occurred during analysis: {str(e)}"
272
+
273
  def create_interface():
274
  """Creates the Gradio interface for the Manufacturing Analysis System."""
275
  with gr.Blocks() as demo:
 
313
 
314
  if __name__ == "__main__":
315
  demo = create_interface()
316
+ demo.queue().launch(share=True)