VishalD1234 commited on
Commit
6051509
·
verified ·
1 Parent(s): a5401cb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +113 -122
app.py CHANGED
@@ -22,91 +22,8 @@ DELAY_REASONS = {
22
  "Step 8": ["No person available to load Carcass", "No person available to collect tire"]
23
  }
24
 
25
- def load_video(video_data, strategy='chat'):
26
- """Loads and processes video data into a format suitable for model input."""
27
- bridge.set_bridge('torch')
28
- num_frames = 24
29
-
30
- if isinstance(video_data, str):
31
- decord_vr = VideoReader(video_data, ctx=cpu(0))
32
- else:
33
- decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
34
-
35
- frame_id_list = []
36
- total_frames = len(decord_vr)
37
- timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
38
- max_second = round(max(timestamps)) + 1
39
-
40
- for second in range(max_second):
41
- closest_num = min(timestamps, key=lambda x: abs(x - second))
42
- index = timestamps.index(closest_num)
43
- frame_id_list.append(index)
44
- if len(frame_id_list) >= num_frames:
45
- break
46
-
47
- video_data = decord_vr.get_batch(frame_id_list)
48
- video_data = video_data.permute(3, 0, 1, 2)
49
- return video_data
50
-
51
- def load_model():
52
- """Loads the pre-trained model and tokenizer with quantization configurations."""
53
- quantization_config = BitsAndBytesConfig(
54
- load_in_4bit=True,
55
- bnb_4bit_compute_dtype=TORCH_TYPE,
56
- bnb_4bit_use_double_quant=True,
57
- bnb_4bit_quant_type="nf4"
58
- )
59
-
60
- tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
61
- model = AutoModelForCausalLM.from_pretrained(
62
- MODEL_PATH,
63
- torch_dtype=TORCH_TYPE,
64
- trust_remote_code=True,
65
- quantization_config=quantization_config,
66
- device_map="auto"
67
- ).eval()
68
-
69
- return model, tokenizer
70
-
71
- def predict(prompt, video_data, temperature, model, tokenizer):
72
- """Generates predictions based on the video and textual prompt."""
73
- video = load_video(video_data, strategy='chat')
74
-
75
- inputs = model.build_conversation_input_ids(
76
- tokenizer=tokenizer,
77
- query=prompt,
78
- images=[video],
79
- history=[],
80
- template_version='chat'
81
- )
82
-
83
- inputs = {
84
- 'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
85
- 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
86
- 'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
87
- 'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
88
- }
89
-
90
- gen_kwargs = {
91
- "max_new_tokens": 2048,
92
- "pad_token_id": 128002,
93
- "top_k": 1,
94
- "do_sample": False,
95
- "top_p": 0.1,
96
- "temperature": temperature,
97
- }
98
-
99
- with torch.no_grad():
100
- outputs = model.generate(**inputs, **gen_kwargs)
101
- outputs = outputs[:, inputs['input_ids'].shape[1]:]
102
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
103
-
104
- return response
105
-
106
- def get_analysis_prompt(step_number):
107
- """Constructs the prompt for analyzing delay reasons based on the selected step."""
108
-
109
- # Step details dictionary included directly in the prompt
110
  step_details = {
111
  1: {
112
  "Name": "Bead Insertion",
@@ -210,69 +127,143 @@ def get_analysis_prompt(step_number):
210
  "Video_substeps_expected": {
211
  "0-3 seconds": "Technician unloads(removes) carcass(tire) from the machine."
212
  },
213
- "Potential_Delay_Reasons": [
214
  "Person not available in time(in 3 sec) to remove carcass.",
215
  "Person is doing bead(ring) insertion before carcass unload causing unload to be delayed by more than 3 sec"
216
  ]
217
  }
218
  }
219
 
220
- step_info = step_details.get(step_number, {"Error": "Invalid step number. Please provide a valid step number."})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
 
222
  if "Error" in step_info:
223
  return step_info["Error"]
224
 
225
  step_name = step_info["Name"]
226
  standard_time = step_info["Standard Time"]
227
- video_substeps = step_info["Video_substeps_expected"]
228
- potential_delay_reasons = step_info["Potential_Delay_Reasons"]
229
 
230
  return f"""
231
  You are an AI expert system specialized in analyzing manufacturing processes and identifying production delays in tire manufacturing. Your role is to accurately classify delay reasons based on visual evidence from production line footage.
232
  Task Context:
233
- The following are the details of all steps in the tire manufacturing process:
234
- {step_details}
235
-
236
- You are analyzing video footage from Step {step_number} of this process. The step is called '{step_name}', and its standard time is {standard_time}.
237
  Required Analysis:
238
  Carefully observe the video for visual cues indicating production interruption.
 
 
 
 
 
239
 
240
- Step Details:
241
- - **Name:** {step_name}
242
- - **Standard Time:** {standard_time}
243
- - **Video Substeps Expected:**
244
- {video_substeps}
245
-
246
- Possible Delay Reasons:
247
- - {', '.join(potential_delay_reasons)}
248
 
249
- Analysis Instructions:
250
- 1. Analyze the video frame by frame to identify evidence of delay or irregular activity.
251
- 2. If no person is visible in any of the frames, the reason might be the absence of required personnel.
252
- 3. If a person is visible and modifying tire components, it may indicate repair or alignment issues.
253
- 4. Match the observed evidence with the possible delay reasons listed above.
254
-
255
- Output Format:
256
- 1. **Selected Reason:** [State the most likely reason from the list above]
 
 
 
 
257
  2. **Visual Evidence:** [Describe specific visual cues that support your selection]
258
  3. **Reasoning:** [Explain why this reason best matches the observed evidence]
259
- 4. **Alternative Analysis:** [Briefly explain why other potential reasons are less likely]
260
-
261
- Important:
262
- Base your analysis solely on visual evidence from the video. Focus on concrete, observable details rather than assumptions. Clearly state if no person or specific activity is observed.
263
-
264
- Example Output:
265
- Output = {{
266
- "Selected Reason": "Delay in bead insertion",
267
- "Visual Evidence": "Technician is not present during the bead alignment process.",
268
- "Reasoning": "The absence of the technician caused a delay in starting the bead insertion.",
269
- "Alternative Analysis": "No raw material issues were visible, and the machine appeared functional."
270
- }}
271
  """
272
 
273
 
274
 
275
-
276
  model, tokenizer = load_model()
277
 
278
  def inference(video, step_number):
 
22
  "Step 8": ["No person available to load Carcass", "No person available to collect tire"]
23
  }
24
 
25
+ def get_step_info(step_number):
26
+ """Returns detailed information about a manufacturing step."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  step_details = {
28
  1: {
29
  "Name": "Bead Insertion",
 
127
  "Video_substeps_expected": {
128
  "0-3 seconds": "Technician unloads(removes) carcass(tire) from the machine."
129
  },
130
+ "Potential_Delay_reasons": [
131
  "Person not available in time(in 3 sec) to remove carcass.",
132
  "Person is doing bead(ring) insertion before carcass unload causing unload to be delayed by more than 3 sec"
133
  ]
134
  }
135
  }
136
 
137
+ return step_details.get(step_number, {"Error": "Invalid step number. Please provide a valid step number."})
138
+
139
+
140
+
141
+ def load_video(video_data, strategy='chat'):
142
+ """Loads and processes video data into a format suitable for model input."""
143
+ bridge.set_bridge('torch')
144
+ num_frames = 24
145
+
146
+ if isinstance(video_data, str):
147
+ decord_vr = VideoReader(video_data, ctx=cpu(0))
148
+ else:
149
+ decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
150
+
151
+ frame_id_list = []
152
+ total_frames = len(decord_vr)
153
+ timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
154
+ max_second = round(max(timestamps)) + 1
155
+
156
+ for second in range(max_second):
157
+ closest_num = min(timestamps, key=lambda x: abs(x - second))
158
+ index = timestamps.index(closest_num)
159
+ frame_id_list.append(index)
160
+ if len(frame_id_list) >= num_frames:
161
+ break
162
+
163
+ video_data = decord_vr.get_batch(frame_id_list)
164
+ video_data = video_data.permute(3, 0, 1, 2)
165
+ return video_data
166
+
167
+ def load_model():
168
+ """Loads the pre-trained model and tokenizer with quantization configurations."""
169
+ quantization_config = BitsAndBytesConfig(
170
+ load_in_4bit=True,
171
+ bnb_4bit_compute_dtype=TORCH_TYPE,
172
+ bnb_4bit_use_double_quant=True,
173
+ bnb_4bit_quant_type="nf4"
174
+ )
175
+
176
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
177
+ model = AutoModelForCausalLM.from_pretrained(
178
+ MODEL_PATH,
179
+ torch_dtype=TORCH_TYPE,
180
+ trust_remote_code=True,
181
+ quantization_config=quantization_config,
182
+ device_map="auto"
183
+ ).eval()
184
+
185
+ return model, tokenizer
186
+
187
+ def predict(prompt, video_data, temperature, model, tokenizer):
188
+ """Generates predictions based on the video and textual prompt."""
189
+ video = load_video(video_data, strategy='chat')
190
+
191
+ inputs = model.build_conversation_input_ids(
192
+ tokenizer=tokenizer,
193
+ query=prompt,
194
+ images=[video],
195
+ history=[],
196
+ template_version='chat'
197
+ )
198
+
199
+ inputs = {
200
+ 'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
201
+ 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
202
+ 'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
203
+ 'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
204
+ }
205
+
206
+ gen_kwargs = {
207
+ "max_new_tokens": 2048,
208
+ "pad_token_id": 128002,
209
+ "top_k": 1,
210
+ "do_sample": False,
211
+ "top_p": 0.1,
212
+ "temperature": temperature,
213
+ }
214
+
215
+ with torch.no_grad():
216
+ outputs = model.generate(**inputs, **gen_kwargs)
217
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
218
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
219
+
220
+ return response
221
+
222
+ def get_analysis_prompt(step_number):
223
+ """Constructs the prompt for analyzing delay reasons based on the selected step."""
224
+ step_info = get_step_info(step_number)
225
 
226
  if "Error" in step_info:
227
  return step_info["Error"]
228
 
229
  step_name = step_info["Name"]
230
  standard_time = step_info["Standard Time"]
231
+ analysis = step_info["Analysis"]
 
232
 
233
  return f"""
234
  You are an AI expert system specialized in analyzing manufacturing processes and identifying production delays in tire manufacturing. Your role is to accurately classify delay reasons based on visual evidence from production line footage.
235
  Task Context:
236
+ You are analyzing video footage from Step {step_number} of a tire manufacturing process where a delay has been detected. The step is called {step_name}, and its standard time is {standard_time}.
 
 
 
237
  Required Analysis:
238
  Carefully observe the video for visual cues indicating production interruption.
239
+ - If no person is visible in any of the frames, the reason probably might be due to their absence.
240
+ - If a person is visible in the video and is observed touching and modifying the layers of the tire, it indicates an issue with tire patching, and the person might be repairing it.
241
+ - Compare observed evidence against the following possible delay reasons:
242
+ - {analysis}
243
+ Following are the subactivities needs to happen in this step.
244
 
245
+ {get_step_info(step_number)}
 
 
 
 
 
 
 
246
 
247
+ Please provide your output in the following format:
248
+ Output_Examples = {
249
+ ["Delay in Bead Insertion", "Lack of raw material"],
250
+ ["Inner Liner Adjustment by Technician", "Person rebuilding defective Tire Sections"],
251
+ ["Manual Adjustment in Ply1 Apply", "Technician repairing defective Tire Sections"],
252
+ ["Delay in Bead Set", "Lack of raw material"],
253
+ ["Delay in Turnup", "Lack of raw material"],
254
+ ["Person Repairing Sidewall", "Person rebuilding defective Tire Sections"],
255
+ ["Delay in Sidewall Stitching", "Lack of raw material"],
256
+ ["No person available to load Carcass", "No person available to collect tire"]
257
+ }
258
+ 1. **Selected Reason:** [State the most likely reason from the given options]
259
  2. **Visual Evidence:** [Describe specific visual cues that support your selection]
260
  3. **Reasoning:** [Explain why this reason best matches the observed evidence]
261
+ 4. **Alternative Analysis:** [Brief explanation of why other possible reasons are less likely]
262
+ Important: Base your analysis solely on visual evidence from the video. Focus on concrete, observable details rather than assumptions. Clearly state if no person or specific activity is observed.
 
 
 
 
 
 
 
 
 
 
263
  """
264
 
265
 
266
 
 
267
  model, tokenizer = load_model()
268
 
269
  def inference(video, step_number):