|
import importlib |
|
|
|
__attributes = { |
|
"SparseStructureEncoder": "sparse_structure_vae", |
|
"SparseStructureDecoder": "sparse_structure_vae", |
|
"SparseStructureFlowModel": "sparse_structure_flow", |
|
"SLatEncoder": "structured_latent_vae", |
|
"SLatGaussianDecoder": "structured_latent_vae", |
|
"SLatRadianceFieldDecoder": "structured_latent_vae", |
|
"SLatMeshDecoder": "structured_latent_vae", |
|
"SLatFlowModel": "structured_latent_flow", |
|
} |
|
|
|
__submodules = [] |
|
|
|
__all__ = list(__attributes.keys()) + __submodules |
|
|
|
|
|
def __getattr__(name): |
|
if name not in globals(): |
|
if name in __attributes: |
|
module_name = __attributes[name] |
|
module = importlib.import_module(f".{module_name}", __name__) |
|
globals()[name] = getattr(module, name) |
|
elif name in __submodules: |
|
module = importlib.import_module(f".{name}", __name__) |
|
globals()[name] = module |
|
else: |
|
raise AttributeError(f"module {__name__} has no attribute {name}") |
|
return globals()[name] |
|
|
|
|
|
def from_pretrained(path: str, **kwargs): |
|
""" |
|
Load a model from a pretrained checkpoint. |
|
|
|
Args: |
|
path: The path to the checkpoint. Can be either local path or a Hugging Face model name. |
|
NOTE: config file and model file should take the name f'{path}.json' and f'{path}.safetensors' respectively. |
|
**kwargs: Additional arguments for the model constructor. |
|
""" |
|
import os |
|
import json |
|
from safetensors.torch import load_file |
|
|
|
is_local = os.path.exists(f"{path}.json") and os.path.exists(f"{path}.safetensors") |
|
|
|
if is_local: |
|
config_file = f"{path}.json" |
|
model_file = f"{path}.safetensors" |
|
else: |
|
from huggingface_hub import hf_hub_download |
|
|
|
path_parts = path.split("/") |
|
repo_id = f"{path_parts[0]}/{path_parts[1]}" |
|
model_name = "/".join(path_parts[2:]) |
|
config_file = hf_hub_download(repo_id, f"{model_name}.json") |
|
model_file = hf_hub_download(repo_id, f"{model_name}.safetensors") |
|
|
|
with open(config_file, "r") as f: |
|
config = json.load(f) |
|
model = __getattr__(config["name"])(**config["args"], **kwargs) |
|
model.load_state_dict(load_file(model_file)) |
|
|
|
return model |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
from .sparse_structure_vae import SparseStructureEncoder, SparseStructureDecoder |
|
from .sparse_structure_flow import SparseStructureFlowModel |
|
from .structured_latent_vae import ( |
|
SLatEncoder, |
|
SLatGaussianDecoder, |
|
SLatRadianceFieldDecoder, |
|
SLatMeshDecoder, |
|
) |
|
from .structured_latent_flow import SLatFlowModel |
|
|