File size: 2,653 Bytes
db6a3b7
 
 
a6bbecf
 
 
 
 
 
 
 
db6a3b7
 
 
 
 
 
a6bbecf
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6bbecf
db6a3b7
 
 
 
 
 
 
a6bbecf
 
 
 
db6a3b7
 
 
a6bbecf
db6a3b7
a6bbecf
db6a3b7
 
 
 
 
 
a6bbecf
db6a3b7
 
a6bbecf
 
 
 
 
 
db6a3b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import importlib

__attributes = {
    "SparseStructureEncoder": "sparse_structure_vae",
    "SparseStructureDecoder": "sparse_structure_vae",
    "SparseStructureFlowModel": "sparse_structure_flow",
    "SLatEncoder": "structured_latent_vae",
    "SLatGaussianDecoder": "structured_latent_vae",
    "SLatRadianceFieldDecoder": "structured_latent_vae",
    "SLatMeshDecoder": "structured_latent_vae",
    "SLatFlowModel": "structured_latent_flow",
}

__submodules = []

__all__ = list(__attributes.keys()) + __submodules


def __getattr__(name):
    if name not in globals():
        if name in __attributes:
            module_name = __attributes[name]
            module = importlib.import_module(f".{module_name}", __name__)
            globals()[name] = getattr(module, name)
        elif name in __submodules:
            module = importlib.import_module(f".{name}", __name__)
            globals()[name] = module
        else:
            raise AttributeError(f"module {__name__} has no attribute {name}")
    return globals()[name]


def from_pretrained(path: str, **kwargs):
    """
    Load a model from a pretrained checkpoint.

    Args:
        path: The path to the checkpoint. Can be either local path or a Hugging Face model name.
              NOTE: config file and model file should take the name f'{path}.json' and f'{path}.safetensors' respectively.
        **kwargs: Additional arguments for the model constructor.
    """
    import os
    import json
    from safetensors.torch import load_file

    is_local = os.path.exists(f"{path}.json") and os.path.exists(f"{path}.safetensors")

    if is_local:
        config_file = f"{path}.json"
        model_file = f"{path}.safetensors"
    else:
        from huggingface_hub import hf_hub_download

        path_parts = path.split("/")
        repo_id = f"{path_parts[0]}/{path_parts[1]}"
        model_name = "/".join(path_parts[2:])
        config_file = hf_hub_download(repo_id, f"{model_name}.json")
        model_file = hf_hub_download(repo_id, f"{model_name}.safetensors")

    with open(config_file, "r") as f:
        config = json.load(f)
    model = __getattr__(config["name"])(**config["args"], **kwargs)
    model.load_state_dict(load_file(model_file))

    return model


# For Pylance
if __name__ == "__main__":
    from .sparse_structure_vae import SparseStructureEncoder, SparseStructureDecoder
    from .sparse_structure_flow import SparseStructureFlowModel
    from .structured_latent_vae import (
        SLatEncoder,
        SLatGaussianDecoder,
        SLatRadianceFieldDecoder,
        SLatMeshDecoder,
    )
    from .structured_latent_flow import SLatFlowModel