import importlib __attributes = { "SparseStructureEncoder": "sparse_structure_vae", "SparseStructureDecoder": "sparse_structure_vae", "SparseStructureFlowModel": "sparse_structure_flow", "SLatEncoder": "structured_latent_vae", "SLatGaussianDecoder": "structured_latent_vae", "SLatRadianceFieldDecoder": "structured_latent_vae", "SLatMeshDecoder": "structured_latent_vae", "SLatFlowModel": "structured_latent_flow", } __submodules = [] __all__ = list(__attributes.keys()) + __submodules def __getattr__(name): if name not in globals(): if name in __attributes: module_name = __attributes[name] module = importlib.import_module(f".{module_name}", __name__) globals()[name] = getattr(module, name) elif name in __submodules: module = importlib.import_module(f".{name}", __name__) globals()[name] = module else: raise AttributeError(f"module {__name__} has no attribute {name}") return globals()[name] def from_pretrained(path: str, **kwargs): """ Load a model from a pretrained checkpoint. Args: path: The path to the checkpoint. Can be either local path or a Hugging Face model name. NOTE: config file and model file should take the name f'{path}.json' and f'{path}.safetensors' respectively. **kwargs: Additional arguments for the model constructor. """ import os import json from safetensors.torch import load_file is_local = os.path.exists(f"{path}.json") and os.path.exists(f"{path}.safetensors") if is_local: config_file = f"{path}.json" model_file = f"{path}.safetensors" else: from huggingface_hub import hf_hub_download path_parts = path.split("/") repo_id = f"{path_parts[0]}/{path_parts[1]}" model_name = "/".join(path_parts[2:]) config_file = hf_hub_download(repo_id, f"{model_name}.json") model_file = hf_hub_download(repo_id, f"{model_name}.safetensors") with open(config_file, "r") as f: config = json.load(f) model = __getattr__(config["name"])(**config["args"], **kwargs) model.load_state_dict(load_file(model_file)) return model # For Pylance if __name__ == "__main__": from .sparse_structure_vae import SparseStructureEncoder, SparseStructureDecoder from .sparse_structure_flow import SparseStructureFlowModel from .structured_latent_vae import ( SLatEncoder, SLatGaussianDecoder, SLatRadianceFieldDecoder, SLatMeshDecoder, ) from .structured_latent_flow import SLatFlowModel