File size: 4,248 Bytes
af898ba
 
 
 
 
 
 
8579254
af898ba
 
 
 
 
 
 
8579254
 
af898ba
8aae359
af898ba
 
 
8aae359
 
 
af898ba
 
 
8aae359
af898ba
8aae359
 
af898ba
8579254
8aae359
af898ba
 
8aae359
 
af898ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aae359
 
af898ba
 
 
 
 
 
 
 
8aae359
 
 
 
 
 
 
 
 
af898ba
 
 
 
8aae359
 
 
 
 
 
 
 
 
 
af898ba
 
 
 
980e614
af898ba
 
 
 
980e614
af898ba
 
 
 
980e614
 
 
8aae359
980e614
 
 
8aae359
b9829b9
8579254
b9829b9
 
 
8aae359
 
 
b9829b9
8aae359
b9829b9
 
8aae359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python

import functools
import os
import pathlib
import sys
import tarfile
from collections.abc import Callable

import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch
import torchvision
import torchvision.transforms as T  # noqa: N812
from torch import nn

sys.path.insert(0, "bizarre-pose-estimator")

from _util.twodee_v0 import I as ImageWrapper

DESCRIPTION = (
    "# [ShuhongChen/bizarre-pose-estimator (segmenter)](https://github.com/ShuhongChen/bizarre-pose-estimator)"
)


def load_sample_image_paths() -> list[pathlib.Path]:
    image_dir = pathlib.Path("images")
    if not image_dir.exists():
        dataset_repo = "hysts/sample-images-TADNE"
        path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset")
        with tarfile.open(path) as f:
            f.extractall()  # noqa: S202
    return sorted(image_dir.glob("*"))


def load_model(device: torch.device) -> tuple[torch.nn.Module, torch.nn.Module]:
    path = huggingface_hub.hf_hub_download("public-data/bizarre-pose-estimator-models", "segmenter.pth")
    ckpt = torch.load(path)

    model = torchvision.models.segmentation.deeplabv3_resnet101()
    model.classifier = nn.Sequential(
        torchvision.models.segmentation.deeplabv3.ASPP(2048, [12, 24, 36]),
        nn.Conv2d(256, 64, kernel_size=3, stride=1, padding=1),
        nn.BatchNorm2d(64),
        nn.LeakyReLU(),
        nn.Conv2d(64, 16, kernel_size=3, stride=1, padding=1),
        nn.BatchNorm2d(16),
        nn.LeakyReLU(),
    )
    final_head = nn.Sequential(
        nn.Conv2d(16 + 3, 16, kernel_size=3, stride=1, padding=1),
        nn.BatchNorm2d(16),
        nn.LeakyReLU(),
        nn.Conv2d(16, 8, kernel_size=3, stride=1, padding=1),
        nn.BatchNorm2d(8),
        nn.LeakyReLU(),
        nn.Conv2d(8, 2, kernel_size=1, stride=1),
    )
    model.load_state_dict(ckpt["model"])
    final_head.load_state_dict(ckpt["final_head"])
    model.to(device)
    model.eval()
    final_head.to(device)
    final_head.eval()
    return model, final_head


@torch.inference_mode()
def predict(
    image: PIL.Image.Image,
    score_threshold: float,
    transform: Callable,
    device: torch.device,
    model: torch.nn.Module,
    final_head: torch.nn.Module,
) -> np.ndarray:
    data = ImageWrapper(image).resize_min(256).convert("RGBA").alpha_bg(1).convert("RGB").pil()
    data = torchvision.transforms.functional.to_tensor(data)
    data = transform(data)
    data = data.to(device).unsqueeze(0)

    out = model(data)["out"]
    out_fin = final_head(
        torch.cat(
            [
                out,
                data,
            ],
            dim=1,
        )
    )
    probs = torch.softmax(out_fin, dim=1)[0]
    probs = probs[1]  # foreground
    probs = PIL.Image.fromarray(probs.cpu().numpy()).resize(image.size)

    mask = np.asarray(probs).copy()
    mask[mask < score_threshold] = 0
    mask[mask > 0] = 1
    mask = mask.astype(bool)

    res = np.asarray(image).copy()
    res[~mask] = 255
    return res


image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 0.5] for path in image_paths]

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model, final_head = load_model(device)
transform = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

fn = functools.partial(predict, transform=transform, device=device, model=model, final_head=final_head)

with gr.Blocks(css_paths="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        with gr.Column():
            image = gr.Image(label="Input", type="pil")
            threshold = gr.Slider(label="Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5)
            run_button = gr.Button("Run")
        with gr.Column():
            result = gr.Image(label="Masked")

    inputs = [image, threshold]
    gr.Examples(
        examples=examples,
        inputs=inputs,
        outputs=result,
        fn=fn,
        cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
    )
    run_button.click(
        fn=fn,
        inputs=inputs,
        outputs=result,
        api_name="predict",
    )

if __name__ == "__main__":
    demo.queue(max_size=15).launch()