hysts HF Staff commited on
Commit
980e614
·
1 Parent(s): fc94951
Files changed (5) hide show
  1. .pre-commit-config.yaml +35 -0
  2. .style.yapf +5 -0
  3. README.md +1 -29
  4. app.py +33 -69
  5. requirements.txt +3 -2
.pre-commit-config.yaml ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ repos:
2
+ - repo: https://github.com/pre-commit/pre-commit-hooks
3
+ rev: v4.2.0
4
+ hooks:
5
+ - id: check-executables-have-shebangs
6
+ - id: check-json
7
+ - id: check-merge-conflict
8
+ - id: check-shebang-scripts-are-executable
9
+ - id: check-toml
10
+ - id: check-yaml
11
+ - id: double-quote-string-fixer
12
+ - id: end-of-file-fixer
13
+ - id: mixed-line-ending
14
+ args: ['--fix=lf']
15
+ - id: requirements-txt-fixer
16
+ - id: trailing-whitespace
17
+ - repo: https://github.com/myint/docformatter
18
+ rev: v1.4
19
+ hooks:
20
+ - id: docformatter
21
+ args: ['--in-place']
22
+ - repo: https://github.com/pycqa/isort
23
+ rev: 5.12.0
24
+ hooks:
25
+ - id: isort
26
+ - repo: https://github.com/pre-commit/mirrors-mypy
27
+ rev: v0.991
28
+ hooks:
29
+ - id: mypy
30
+ args: ['--ignore-missing-imports']
31
+ - repo: https://github.com/google/yapf
32
+ rev: v0.32.0
33
+ hooks:
34
+ - id: yapf
35
+ args: ['--parallel', '--in-place']
.style.yapf ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ [style]
2
+ based_on_style = pep8
3
+ blank_line_before_nested_class_or_def = false
4
+ spaces_before_comment = 2
5
+ split_before_logical_operator = true
README.md CHANGED
@@ -4,35 +4,7 @@ emoji: 🐢
4
  colorFrom: blue
5
  colorTo: indigo
6
  sdk: gradio
7
- sdk_version: 3.0.5
8
  app_file: app.py
9
  pinned: false
10
  ---
11
-
12
- # Configuration
13
-
14
- `title`: _string_
15
- Display title for the Space
16
-
17
- `emoji`: _string_
18
- Space emoji (emoji-only character allowed)
19
-
20
- `colorFrom`: _string_
21
- Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
22
-
23
- `colorTo`: _string_
24
- Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
25
-
26
- `sdk`: _string_
27
- Can be either `gradio`, `streamlit`, or `static`
28
-
29
- `sdk_version` : _string_
30
- Only applicable for `streamlit` SDK.
31
- See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
32
-
33
- `app_file`: _string_
34
- Path to your main application file (which contains either `gradio` or `streamlit` Python code, or `static` html code).
35
- Path is relative to the root of the repository.
36
-
37
- `pinned`: _boolean_
38
- Whether the Space stays on top of your list.
 
4
  colorFrom: blue
5
  colorTo: indigo
6
  sdk: gradio
7
+ sdk_version: 3.19.1
8
  app_file: app.py
9
  pinned: false
10
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -2,7 +2,6 @@
2
 
3
  from __future__ import annotations
4
 
5
- import argparse
6
  import functools
7
  import os
8
  import pathlib
@@ -25,29 +24,12 @@ from _util.twodee_v0 import I as ImageWrapper
25
 
26
  TITLE = 'ShuhongChen/bizarre-pose-estimator (segmenter)'
27
  DESCRIPTION = 'This is an unofficial demo for https://github.com/ShuhongChen/bizarre-pose-estimator.'
28
- ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.bizarre-pose-estimator-segmenter" alt="visitor badge"/></center>'
29
 
30
- TOKEN = os.environ['TOKEN']
31
  MODEL_REPO = 'hysts/bizarre-pose-estimator-models'
32
  MODEL_FILENAME = 'segmenter.pth'
33
 
34
 
35
- def parse_args() -> argparse.Namespace:
36
- parser = argparse.ArgumentParser()
37
- parser.add_argument('--device', type=str, default='cpu')
38
- parser.add_argument('--score-slider-step', type=float, default=0.05)
39
- parser.add_argument('--score-threshold', type=float, default=0.5)
40
- parser.add_argument('--theme', type=str)
41
- parser.add_argument('--live', action='store_true')
42
- parser.add_argument('--share', action='store_true')
43
- parser.add_argument('--port', type=int)
44
- parser.add_argument('--disable-queue',
45
- dest='enable_queue',
46
- action='store_false')
47
- parser.add_argument('--allow-flagging', type=str, default='never')
48
- return parser.parse_args()
49
-
50
-
51
  def load_sample_image_paths() -> list[pathlib.Path]:
52
  image_dir = pathlib.Path('images')
53
  if not image_dir.exists():
@@ -55,7 +37,7 @@ def load_sample_image_paths() -> list[pathlib.Path]:
55
  path = huggingface_hub.hf_hub_download(dataset_repo,
56
  'images.tar.gz',
57
  repo_type='dataset',
58
- use_auth_token=TOKEN)
59
  with tarfile.open(path) as f:
60
  f.extractall()
61
  return sorted(image_dir.glob('*'))
@@ -65,7 +47,7 @@ def load_model(
65
  device: torch.device) -> tuple[torch.nn.Module, torch.nn.Module]:
66
  path = huggingface_hub.hf_hub_download(MODEL_REPO,
67
  MODEL_FILENAME,
68
- use_auth_token=TOKEN)
69
  ckpt = torch.load(path)
70
 
71
  model = torchvision.models.segmentation.deeplabv3_resnet101()
@@ -115,59 +97,41 @@ def predict(image: PIL.Image.Image, score_threshold: float,
115
  probs = probs[1] # foreground
116
  probs = PIL.Image.fromarray(probs.cpu().numpy()).resize(image.size)
117
 
118
- mask = np.asarray(probs)
119
  mask[mask < score_threshold] = 0
120
  mask[mask > 0] = 1
121
  mask = mask.astype(bool)
122
 
123
- res = np.asarray(image)
124
  res[~mask] = 255
125
  return res
126
 
127
 
128
- def main():
129
- args = parse_args()
130
- device = torch.device(args.device)
131
-
132
- image_paths = load_sample_image_paths()
133
- examples = [[path.as_posix(), args.score_threshold]
134
- for path in image_paths]
135
-
136
- model, final_head = load_model(device)
137
- transform = T.Normalize(mean=[0.485, 0.456, 0.406],
138
- std=[0.229, 0.224, 0.225])
139
-
140
- func = functools.partial(predict,
141
- transform=transform,
142
- device=device,
143
- model=model,
144
- final_head=final_head)
145
- func = functools.update_wrapper(func, predict)
146
-
147
- gr.Interface(
148
- func,
149
- [
150
- gr.inputs.Image(type='pil', label='Input'),
151
- gr.inputs.Slider(0,
152
- 1,
153
- step=args.score_slider_step,
154
- default=args.score_threshold,
155
- label='Score Threshold'),
156
- ],
157
- gr.outputs.Image(label='Masked'),
158
- examples=examples,
159
- title=TITLE,
160
- description=DESCRIPTION,
161
- article=ARTICLE,
162
- theme=args.theme,
163
- allow_flagging=args.allow_flagging,
164
- live=args.live,
165
- ).launch(
166
- enable_queue=args.enable_queue,
167
- server_port=args.port,
168
- share=args.share,
169
- )
170
-
171
-
172
- if __name__ == '__main__':
173
- main()
 
2
 
3
  from __future__ import annotations
4
 
 
5
  import functools
6
  import os
7
  import pathlib
 
24
 
25
  TITLE = 'ShuhongChen/bizarre-pose-estimator (segmenter)'
26
  DESCRIPTION = 'This is an unofficial demo for https://github.com/ShuhongChen/bizarre-pose-estimator.'
 
27
 
28
+ HF_TOKEN = os.getenv('HF_TOKEN')
29
  MODEL_REPO = 'hysts/bizarre-pose-estimator-models'
30
  MODEL_FILENAME = 'segmenter.pth'
31
 
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  def load_sample_image_paths() -> list[pathlib.Path]:
34
  image_dir = pathlib.Path('images')
35
  if not image_dir.exists():
 
37
  path = huggingface_hub.hf_hub_download(dataset_repo,
38
  'images.tar.gz',
39
  repo_type='dataset',
40
+ use_auth_token=HF_TOKEN)
41
  with tarfile.open(path) as f:
42
  f.extractall()
43
  return sorted(image_dir.glob('*'))
 
47
  device: torch.device) -> tuple[torch.nn.Module, torch.nn.Module]:
48
  path = huggingface_hub.hf_hub_download(MODEL_REPO,
49
  MODEL_FILENAME,
50
+ use_auth_token=HF_TOKEN)
51
  ckpt = torch.load(path)
52
 
53
  model = torchvision.models.segmentation.deeplabv3_resnet101()
 
97
  probs = probs[1] # foreground
98
  probs = PIL.Image.fromarray(probs.cpu().numpy()).resize(image.size)
99
 
100
+ mask = np.asarray(probs).copy()
101
  mask[mask < score_threshold] = 0
102
  mask[mask > 0] = 1
103
  mask = mask.astype(bool)
104
 
105
+ res = np.asarray(image).copy()
106
  res[~mask] = 255
107
  return res
108
 
109
 
110
+ image_paths = load_sample_image_paths()
111
+ examples = [[path.as_posix(), 0.5] for path in image_paths]
112
+
113
+ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
114
+ model, final_head = load_model(device)
115
+ transform = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
116
+
117
+ func = functools.partial(predict,
118
+ transform=transform,
119
+ device=device,
120
+ model=model,
121
+ final_head=final_head)
122
+
123
+ gr.Interface(
124
+ fn=func,
125
+ inputs=[
126
+ gr.Image(type='pil', label='Input'),
127
+ gr.Slider(label='Score Threshold',
128
+ minimum=0,
129
+ maximum=1,
130
+ step=0.05,
131
+ value=0.5),
132
+ ],
133
+ outputs=gr.Image(label='Masked'),
134
+ examples=examples,
135
+ title=TITLE,
136
+ description=DESCRIPTION,
137
+ ).queue().launch(show_api=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,2 +1,3 @@
1
- torch>=1.10.1
2
- torchvision>=0.11.2
 
 
1
+ numpy==1.23.5
2
+ torch==1.13.1
3
+ torchvision==0.14.1