Spaces:
Sleeping
Sleeping
File size: 2,599 Bytes
ea189f9 a14015e 5bbeebd ea189f9 5bbeebd a14015e ea189f9 a14015e ea189f9 a14015e ea189f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import pandas as pd
import numpy as np
from sklearn.ensemble import VotingRegressor
from sklearn.base import BaseEstimator, RegressorMixin
import gradio as gr
import joblib
class FastAIWrapper(BaseEstimator, RegressorMixin):
def __init__(self, learn):
self.learn = learn
def fit(self, X, y):
return self
def predict(self, X):
dl = self.learn.dls.test_dl(X)
preds, _ = self.learn.get_preds(dl=dl)
return preds.numpy().flatten()
# Load your data and trained model
df = pd.read_csv('City_Employee_Payroll__Current__20240915.csv', low_memory=False)
ensemble = joblib.load('ensemble_model.joblib')
def predict_total_pay(gender, job_title, ethnicity):
# Create a sample input DataFrame
sample = pd.DataFrame({
'GENDER': [gender],
'JOB_TITLE': [job_title],
'ETHNICITY': [ethnicity],
})
# Fill in other required features (you may need to adjust this based on your model's requirements)
sample['EMPLOYMENT_TYPE'] = df['EMPLOYMENT_TYPE'].mode().iloc[0]
sample['JOB_STATUS'] = df['JOB_STATUS'].mode().iloc[0]
sample['MOU'] = df['MOU'].mode().iloc[0]
sample['DEPARTMENT_NO'] = df['DEPARTMENT_NO'].mode().iloc[0]
sample['PAY_YEAR'] = df['PAY_YEAR'].max()
sample['REGULAR_PAY'] = df['REGULAR_PAY'].mean()
sample['OVERTIME_PAY'] = df['OVERTIME_PAY'].mean()
sample['ALL_OTHER_PAY'] = df['ALL_OTHER_PAY'].mean()
# Calculate derived features
sample['PAY_RATIO'] = sample['REGULAR_PAY'] / (sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY'] + 1)
sample['TOTAL_NON_REGULAR_PAY'] = sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY']
# Make prediction
prediction = ensemble.predict(sample)[0]
return prediction
def gradio_predict(gender, ethnicity, job_title):
predicted_pay = predict_total_pay(gender, job_title, ethnicity)
return f"${predicted_pay:.2f}"
# Prepare dropdown options
genders = df['GENDER'].dropna().unique().tolist()
ethnicities = df['ETHNICITY'].dropna().unique().tolist()
job_titles = sorted(df['JOB_TITLE'].dropna().unique().tolist())
# Create Gradio interface
iface = gr.Interface(
fn=gradio_predict,
inputs=[
gr.Dropdown(choices=genders, label="Gender"),
gr.Dropdown(choices=ethnicities, label="Ethnicity"),
gr.Dropdown(choices=job_titles, label="Job Title")
],
outputs=gr.Textbox(label="Predicted Total Pay"),
title="LA City Employee Pay Predictor",
description="Predict the total pay for LA City employees based on gender, ethnicity, and job title."
)
iface.launch() |