File size: 1,156 Bytes
4d871c7 68d71c5 4d871c7 68d71c5 4d871c7 68d71c5 4d871c7 68d71c5 4d871c7 68d71c5 4d871c7 68d71c5 4d871c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import gradio as gr
from huggingface_hub import InferenceClient
from optimum.intel import OVModelForCausalLM
from transformers import AutoTokenizer, pipeline
# Load the model and tokenizer
model_id = "hsuwill000/Qwen2.5-1.5B-Instruct-openvino-8bit"
model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Create generation pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
def respond(message, history):
# Combine current message with previous history
input_text = message if not history else history[-1]["value"] + " " + message
# Get model's response
response = pipe(input_text, max_length=512, truncation=True, num_return_sequences=1)
reply = response[0]['generated_text']
# Return new message format
print(f"Message: {message}")
print(f"Reply: {reply}")
return [{"role": "bot", "value": reply}]
# Set up Gradio chat interface
demo = gr.ChatInterface(fn=respond, title="Qwen2.5-3B-Instruct-openvino", description="Qwen2.5-3B-Instruct-openvino", type='chatbot')
if __name__ == "__main__":
demo.launch() |