hsuwill000 commited on
Commit
4d871c7
·
verified ·
1 Parent(s): 099ee87

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+ from optimum.intel import OVModelForCausalLM
4
+ from transformers import AutoTokenizer, pipeline
5
+
6
+ # 載入模型和標記器
7
+ model_id = "hsuwill000/Qwen2.5-1.5B-Instruct-openvino-8bit"
8
+ model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto")
9
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
10
+
11
+ # 建立生成管道
12
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
13
+
14
+ def respond(message, history):
15
+ # 將當前訊息與歷史訊息合併
16
+ input_text = message if not history else history[-1]["content"] + " " + message
17
+ input_text = message+",(450字內回覆)"
18
+ # 獲取模型的回應
19
+ response = pipe(input_text, max_length=512, truncation=True, num_return_sequences=1)
20
+ reply = response[0]['generated_text']
21
+
22
+ # 返回新的消息格式
23
+ print(f"Message: {message}")
24
+ print(f"Reply: {reply}")
25
+ return reply
26
+
27
+ # 設定 Gradio 的聊天界面
28
+ demo = gr.ChatInterface(fn=respond, title="Qwen2.5-3B-Instruct-openvino", description="Qwen2.5-3B-Instruct-openvino", type='messages')
29
+
30
+ if __name__ == "__main__":
31
+ demo.launch()