hsuwill000 commited on
Commit
68d71c5
·
verified ·
1 Parent(s): f12a0d5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -10
app.py CHANGED
@@ -3,29 +3,28 @@ from huggingface_hub import InferenceClient
3
  from optimum.intel import OVModelForCausalLM
4
  from transformers import AutoTokenizer, pipeline
5
 
6
- # 載入模型和標記器
7
  model_id = "hsuwill000/Qwen2.5-1.5B-Instruct-openvino-8bit"
8
  model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto")
9
  tokenizer = AutoTokenizer.from_pretrained(model_id)
10
 
11
- # 建立生成管道
12
  pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
13
 
14
  def respond(message, history):
15
- # 將當前訊息與歷史訊息合併
16
- input_text = message if not history else history[-1]["content"] + " " + message
17
- input_text = message+",(450字內回覆)"
18
- # 獲取模型的回應
19
  response = pipe(input_text, max_length=512, truncation=True, num_return_sequences=1)
20
  reply = response[0]['generated_text']
21
 
22
- # 返回新的消息格式
23
  print(f"Message: {message}")
24
  print(f"Reply: {reply}")
25
- return reply
26
 
27
- # 設定 Gradio 的聊天界面
28
- demo = gr.ChatInterface(fn=respond, title="Qwen2.5-3B-Instruct-openvino", description="Qwen2.5-3B-Instruct-openvino", type='messages')
29
 
30
  if __name__ == "__main__":
31
  demo.launch()
 
3
  from optimum.intel import OVModelForCausalLM
4
  from transformers import AutoTokenizer, pipeline
5
 
6
+ # Load the model and tokenizer
7
  model_id = "hsuwill000/Qwen2.5-1.5B-Instruct-openvino-8bit"
8
  model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto")
9
  tokenizer = AutoTokenizer.from_pretrained(model_id)
10
 
11
+ # Create generation pipeline
12
  pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
13
 
14
  def respond(message, history):
15
+ # Combine current message with previous history
16
+ input_text = message if not history else history[-1]["value"] + " " + message
17
+ # Get model's response
 
18
  response = pipe(input_text, max_length=512, truncation=True, num_return_sequences=1)
19
  reply = response[0]['generated_text']
20
 
21
+ # Return new message format
22
  print(f"Message: {message}")
23
  print(f"Reply: {reply}")
24
+ return [{"role": "bot", "value": reply}]
25
 
26
+ # Set up Gradio chat interface
27
+ demo = gr.ChatInterface(fn=respond, title="Qwen2.5-3B-Instruct-openvino", description="Qwen2.5-3B-Instruct-openvino", type='chatbot')
28
 
29
  if __name__ == "__main__":
30
  demo.launch()