Spaces:
Running
Running
File size: 30,105 Bytes
3353605 9e0e548 3353605 9e0e548 8036e11 3353605 9e0e548 3353605 9e0e548 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 ef94dd2 3353605 6b32859 3353605 9e0e548 3353605 9e0e548 3353605 8036e11 9e0e548 6b32859 9e0e548 6b32859 9e0e548 6b32859 9e0e548 6b32859 9e0e548 6b32859 9e0e548 6b32859 9e0e548 6b32859 9e0e548 6b32859 9e0e548 6b32859 9e0e548 6b32859 9e0e548 8036e11 9e0e548 8036e11 6b32859 9e0e548 8036e11 9e0e548 3353605 7fb09f2 9e0e548 7fb09f2 6b32859 9e0e548 8036e11 9e0e548 6b32859 9e0e548 6b32859 9e0e548 6b32859 7fb09f2 6b32859 7fb09f2 6b32859 7fb09f2 6b32859 9e0e548 bc3e7d7 9e0e548 bc3e7d7 9e0e548 bc3e7d7 9e0e548 bc3e7d7 6b32859 7fb09f2 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 7fb09f2 3353605 6b32859 3353605 7fb09f2 3353605 7fb09f2 3353605 7fb09f2 3353605 7fb09f2 6b32859 3353605 7fb09f2 3353605 7fb09f2 3353605 7fb09f2 3353605 7fb09f2 3353605 7fb09f2 3353605 7fb09f2 3353605 7fb09f2 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 c1c3142 7fb09f2 6b32859 89240e9 7fb09f2 6b32859 7fb09f2 6b32859 7fb09f2 6b32859 7fb09f2 6b32859 7fb09f2 6b32859 7fb09f2 6b32859 7fb09f2 6b32859 3353605 6b32859 3353605 6b32859 3353605 6b32859 3353605 77f6935 3353605 c0c85ff 6b32859 3353605 77f6935 3353605 c0c85ff 6b32859 77f6935 6b32859 77f6935 6b32859 3353605 6b32859 0ae8a86 3353605 6b32859 3353605 6b32859 3353605 77f6935 3353605 77f6935 6b32859 9e0e548 6b32859 3353605 77f6935 3353605 6b32859 3353605 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 |
import gradio as gr
import gc
import os
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Force CPU only
import uuid
import threading
import pandas as pd
import torch
from langchain.document_loaders import CSVLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFacePipeline
from langchain.chains import LLMChain
from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration, BitsAndBytesConfig, pipeline
from langchain.prompts import PromptTemplate
from llama_cpp import Llama
import re
import datetime
import warnings
warnings.filterwarnings('ignore')
# Global model cache
MODEL_CACHE = {
"model": None,
"tokenizer": None,
"init_lock": threading.Lock(),
"model_name": None
}
# Create directories for user data
os.makedirs("user_data", exist_ok=True)
os.makedirs("performance_metrics", exist_ok=True)
# Model configuration dictionary
MODEL_CONFIG = {
"Llama 2 Chat": {
"name": "TheBloke/Llama-2-7B-Chat-GGUF",
"description": "Llama 2 7B Chat model with good general performance",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"TinyLlama Chat": {
"name": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
"description": "Lightweight model with 1.1B parameters, fast and efficient",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"Mistral Instruct": {
"name": "TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
"description": "7B instruction-tuned model with excellent reasoning",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"Phi-4 Mini Instruct": {
"name": "microsoft/Phi-4-mini-instruct",
"description": "Lightweight model from Microsoft suitable for instructional tasks",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"DeepSeek Coder Instruct": {
"name": "deepseek-ai/deepseek-coder-1.3b-instruct",
"description": "1.3B model for code and data analysis",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"DeepSeek Lite Chat": {
"name": "deepseek-ai/DeepSeek-V2-Lite-Chat",
"description": "Light but powerful chat model from DeepSeek",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"Qwen2.5 Coder Instruct": {
"name": "Qwen/Qwen2.5-Coder-3B-Instruct-GGUF",
"description": "3B model specialized for code and technical applications",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"DeepSeek Distill Qwen": {
"name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
"description": "1.5B distilled model with good balance of speed and quality",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"Flan T5 Small": {
"name": "google/flan-t5-small",
"description": "Lightweight T5 model optimized for instruction following",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32,
"is_t5": True
}
}
# Performance metrics tracking
class PerformanceTracker:
def __init__(self):
self.metrics_file = "performance_metrics/model_performance.csv"
# Create metrics file if it doesn't exist
if not os.path.exists(self.metrics_file):
with open(self.metrics_file, "w") as f:
f.write("timestamp,model,question,processing_time,response_length\n")
def log_performance(self, model_name, question, processing_time, response):
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
response_length = len(response)
with open(self.metrics_file, "a") as f:
f.write(f'"{timestamp}","{model_name}","{question}",{processing_time},{response_length}\n')
print(f"Logged performance for {model_name}: {processing_time:.2f}s")
# Initialize performance tracker
performance_tracker = PerformanceTracker()
def initialize_model_once(model_key):
with MODEL_CACHE["init_lock"]:
current_model = MODEL_CACHE["model_name"]
if MODEL_CACHE["model"] is None or current_model != model_key:
# Clear previous model
if MODEL_CACHE["model"] is not None:
del MODEL_CACHE["model"]
if MODEL_CACHE["tokenizer"] is not None:
del MODEL_CACHE["tokenizer"]
torch.cuda.empty_cache() if torch.cuda.is_available() else None
model_info = MODEL_CONFIG[model_key]
model_name = model_info["name"]
MODEL_CACHE["model_name"] = model_key
try:
print(f"Loading model: {model_name}")
# Check if this is a GGUF model
if "GGUF" in model_name:
# Download the model file first if it doesn't exist
from huggingface_hub import hf_hub_download
try:
# Try to find the GGUF file in the repo
repo_id = model_name
model_path = hf_hub_download(
repo_id=repo_id,
filename="model.gguf" # File name may differ
)
except Exception as e:
print(f"Couldn't find model.gguf, trying other filenames: {str(e)}")
# Try to find GGUF file with other names
import requests
from huggingface_hub import list_repo_files
files = list_repo_files(repo_id)
gguf_files = [f for f in files if f.endswith('.gguf')]
if not gguf_files:
raise ValueError(f"No GGUF files found in {repo_id}")
# Use first GGUF file found
model_path = hf_hub_download(repo_id=repo_id, filename=gguf_files[0])
# Load GGUF model with llama-cpp-python
MODEL_CACHE["model"] = Llama(
model_path=model_path,
n_ctx=2048, # Smaller context for memory savings
n_batch=512,
n_threads=2 # Adjust for 2 vCPU
)
MODEL_CACHE["tokenizer"] = None # GGUF doesn't need separate tokenizer
MODEL_CACHE["is_gguf"] = True
# Handle T5 models
elif model_info.get("is_t5", False):
MODEL_CACHE["tokenizer"] = T5Tokenizer.from_pretrained(model_name)
MODEL_CACHE["model"] = T5ForConditionalGeneration.from_pretrained(
model_name,
torch_dtype=model_info["dtype"],
device_map="auto" if torch.cuda.is_available() else None,
low_cpu_mem_usage=True
)
MODEL_CACHE["is_gguf"] = False
# Handle standard HF models
else:
# Only use quantization if CUDA is available
if torch.cuda.is_available():
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quantization_config,
torch_dtype=model_info["dtype"],
device_map="auto",
low_cpu_mem_usage=True,
trust_remote_code=True
)
else:
# For CPU-only environments, load without quantization
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32, # Use float32 for CPU
device_map=None,
low_cpu_mem_usage=True,
trust_remote_code=True
)
MODEL_CACHE["is_gguf"] = False
print(f"Model {model_name} loaded successfully")
except Exception as e:
import traceback
print(f"Error loading model {model_name}: {str(e)}")
print(traceback.format_exc())
raise RuntimeError(f"Failed to load model {model_name}: {str(e)}")
return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"], MODEL_CACHE.get("is_gguf", False)
def create_llm_pipeline(model_key):
"""Create a new pipeline using the specified model"""
try:
print(f"Creating pipeline for model: {model_key}")
tokenizer, model, is_gguf = initialize_model_once(model_key)
# Get the model info for reference
model_info = MODEL_CONFIG[model_key]
if model is None:
raise ValueError(f"Model is None for {model_key}")
# For GGUF models from llama-cpp-python
if is_gguf:
# Create adapter to use GGUF model like HF pipeline
from langchain.llms import LlamaCpp
llm = LlamaCpp(
model_path=model.model_path,
temperature=0.3,
max_tokens=256, # Increased for more comprehensive answers
top_p=0.9,
n_ctx=2048,
streaming=False
)
return llm
# Create appropriate pipeline for HF models
elif model_info.get("is_t5", False):
print("Creating T5 pipeline")
pipe = pipeline(
"text2text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=256, # Increased for more comprehensive answers
temperature=0.3,
top_p=0.9,
return_full_text=False,
)
else:
print("Creating causal LM pipeline")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=256, # Increased for more comprehensive answers
temperature=0.3,
top_p=0.9,
top_k=30,
repetition_penalty=1.2,
return_full_text=False,
)
print("Pipeline created successfully")
return HuggingFacePipeline(pipeline=pipe)
except Exception as e:
import traceback
print(f"Error creating pipeline: {str(e)}")
print(traceback.format_exc())
raise RuntimeError(f"Failed to create pipeline: {str(e)}")
def handle_model_loading_error(model_key, session_id):
"""Handle model loading errors by providing alternative model suggestions"""
suggested_models = [
"DeepSeek Coder Instruct", # 1.3B model
"Phi-4 Mini Instruct", # Light model
"TinyLlama Chat", # 1.1B model
"Flan T5 Small" # Lightweight T5
]
# Remove the current model from suggestions if it's in the list
if model_key in suggested_models:
suggested_models.remove(model_key)
suggestions = ", ".join(suggested_models[:3]) # Only show top 3 suggestions
return None, f"Unable to load model {model_key}. Please try another model such as: {suggestions}"
def create_conversational_chain(db, file_path, model_key):
llm = create_llm_pipeline(model_key)
# Load the file into pandas to get metadata about the CSV
df = pd.read_csv(file_path)
# Create improved prompt template that focuses on pure LLM analysis
template = """
You are an expert data analyst tasked with answering questions about a CSV file. The file has been analyzed, and its structure is provided below.
CSV File Structure:
- Total rows: {row_count}
- Total columns: {column_count}
- Columns: {columns_list}
Sample data (first few rows):
{sample_data}
Additional context from the document:
{context}
User Question: {question}
IMPORTANT INSTRUCTIONS:
1. Answer the question directly about the CSV data with accurate information.
2. If asked for basic statistics (mean, sum, max, min, count, etc.), perform the calculation mentally and provide the result. Include up to 2 decimal places for non-integer values.
3. If asked about patterns or trends, analyze the data thoughtfully.
4. Keep answers concise but informative. Respond in the same language as the question.
5. If you are not certain of a precise answer, explain what you can determine from the available data.
6. You can perform simple calculations including: counts, sums, averages, minimums, maximums, and basic filtering.
7. For questions about specific values in the data, reference the sample data and available context.
8. Do not mention any programming language or how you would code the solution.
Your analysis:
"""
PROMPT = PromptTemplate(
template=template,
input_variables=["row_count", "column_count", "columns_list", "sample_data", "context", "question"]
)
# Create retriever
retriever = db.as_retriever(search_kwargs={"k": 5}) # Increase k for better context
# Process query with better error handling
def process_query(query, chat_history):
try:
start_time = time.time()
# Get information from dataframe for context
columns_list = ", ".join(df.columns.tolist())
sample_data = df.head(5).to_string() # Show 5 rows for better context
row_count = len(df)
column_count = len(df.columns)
# Get context from vector database
docs = retriever.get_relevant_documents(query)
context = "\n\n".join([doc.page_content for doc in docs])
# Run the chain
chain = LLMChain(llm=llm, prompt=PROMPT)
raw_result = chain.run(
row_count=row_count,
column_count=column_count,
columns_list=columns_list,
sample_data=sample_data,
context=context,
question=query
)
# Clean the result
cleaned_result = raw_result.strip()
# If result is empty after cleaning, use a fallback
if not cleaned_result:
cleaned_result = "I couldn't process a complete answer to your question. Please try asking in a different way or provide more specific details about what you'd like to know about the data."
processing_time = time.time() - start_time
# Log performance metrics
performance_tracker.log_performance(
model_key,
query,
processing_time,
cleaned_result
)
# Add processing time to the response for comparison purposes
result_with_metrics = f"{cleaned_result}\n\n[Processing time: {processing_time:.2f} seconds]"
return {"answer": result_with_metrics}
except Exception as e:
import traceback
print(f"Error in process_query: {str(e)}")
print(traceback.format_exc())
return {"answer": f"An error occurred while processing your question: {str(e)}"}
return process_query
class ChatBot:
def __init__(self, session_id, model_key="DeepSeek Coder Instruct"):
self.session_id = session_id
self.chat_history = []
self.chain = None
self.user_dir = f"user_data/{session_id}"
self.csv_file_path = None
self.model_key = model_key
os.makedirs(self.user_dir, exist_ok=True)
def process_file(self, file, model_key=None):
if model_key:
self.model_key = model_key
if file is None:
return "Please upload a CSV file first."
try:
print(f"Processing file using model: {self.model_key}")
# Handle file from Gradio
file_path = file.name if hasattr(file, 'name') else str(file)
self.csv_file_path = file_path
print(f"CSV file path: {file_path}")
# Copy to user directory
user_file_path = f"{self.user_dir}/uploaded.csv"
# Verify the CSV can be loaded
try:
df = pd.read_csv(file_path)
print(f"CSV verified: {df.shape[0]} rows, {len(df.columns)} columns")
# Save a copy in user directory
df.to_csv(user_file_path, index=False)
self.csv_file_path = user_file_path
print(f"CSV saved to {user_file_path}")
except Exception as e:
print(f"Error reading CSV: {str(e)}")
return f"Error reading CSV: {str(e)}"
# Load document with reduced chunk size for better memory usage
try:
loader = CSVLoader(file_path=user_file_path, encoding="utf-8", csv_args={
'delimiter': ','})
data = loader.load()
print(f"Documents loaded: {len(data)}")
except Exception as e:
print(f"Error loading documents: {str(e)}")
return f"Error loading documents: {str(e)}"
# Create vector database with optimized settings
try:
db_path = f"{self.user_dir}/db_faiss"
# Use CPU-friendly embeddings with smaller dimensions
embeddings = HuggingFaceEmbeddings(
model_name='sentence-transformers/all-MiniLM-L6-v2',
model_kwargs={'device': 'cpu'}
)
db = FAISS.from_documents(data, embeddings)
db.save_local(db_path)
print(f"Vector database created at {db_path}")
except Exception as e:
print(f"Error creating vector database: {str(e)}")
return f"Error creating vector database: {str(e)}"
# Create custom chain
try:
print(f"Creating conversation chain with model: {self.model_key}")
self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key)
print("Chain created successfully")
except Exception as e:
import traceback
print(f"Error creating chain: {str(e)}")
print(traceback.format_exc())
return f"Error creating chain: {str(e)}"
# Add basic file info to chat history for context
file_info = f"CSV successfully loaded with {df.shape[0]} rows and {len(df.columns)} columns using model {self.model_key}. Columns: {', '.join(df.columns.tolist())}"
self.chat_history.append(("System", file_info))
return f"CSV file successfully processed with model {self.model_key}! You can now chat with the model to analyze the data."
except Exception as e:
import traceback
print(traceback.format_exc())
return f"File processing error: {str(e)}"
def change_model(self, model_key):
"""Change the model being used and recreate the chain if necessary"""
try:
if model_key == self.model_key:
return f"Model {model_key} is already in use."
print(f"Changing model from {self.model_key} to {model_key}")
self.model_key = model_key
# If we have an active session with a file already loaded, recreate the chain
if self.csv_file_path and os.path.exists(self.csv_file_path):
try:
# Load existing database
db_path = f"{self.user_dir}/db_faiss"
if not os.path.exists(db_path):
return f"Error: Database not found. Please upload the CSV file again."
print(f"Loading embeddings from {db_path}")
embeddings = HuggingFaceEmbeddings(
model_name='sentence-transformers/all-MiniLM-L6-v2',
model_kwargs={'device': 'cpu'}
)
# Add allow_dangerous_deserialization=True flag
db = FAISS.load_local(db_path, embeddings, allow_dangerous_deserialization=True)
print(f"FAISS database loaded successfully")
# Create new chain with the selected model
print(f"Creating new conversation chain with {model_key}")
self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key)
print(f"Chain created successfully")
# Add notification to chat history
self.chat_history.append(("System", f"Model successfully changed to {model_key}."))
return f"Model successfully changed to {model_key}."
except Exception as e:
import traceback
error_trace = traceback.format_exc()
print(f"Detailed error in change_model: {error_trace}")
return f"Error changing model: {str(e)}"
else:
# Just update the model key if no file is loaded yet
print(f"No CSV file loaded yet, just updating model preference to {model_key}")
return f"Model changed to {model_key}. Please upload a CSV file to begin."
except Exception as e:
import traceback
error_trace = traceback.format_exc()
print(f"Unexpected error in change_model: {error_trace}")
return f"Unexpected error while changing model: {str(e)}"
def chat(self, message, history):
if self.chain is None:
return "Please upload a CSV file first."
try:
# Process the question with the chain
result = self.chain(message, self.chat_history)
# Get the answer with fallback
answer = result.get("answer", "Sorry, I couldn't generate an answer. Please try asking a different question.")
# Ensure we never return empty
if not answer or answer.strip() == "":
answer = "Sorry, I couldn't generate an appropriate answer. Please try asking the question differently."
# Update internal chat history
self.chat_history.append((message, answer))
# Return just the answer for Gradio
return answer
except Exception as e:
import traceback
print(traceback.format_exc())
return f"Error: {str(e)}"
# UI Code
def create_gradio_interface():
with gr.Blocks(title="Chat with CSV using AI Models") as interface:
session_id = gr.State(lambda: str(uuid.uuid4()))
chatbot_state = gr.State(lambda: None)
model_selected = gr.State(lambda: False) # Track if model is already in use
# Get model choices
model_choices = list(MODEL_CONFIG.keys())
default_model = "DeepSeek Coder Instruct" # Default model
gr.HTML("<h1 style='text-align: center;'>Chat with CSV using AI Models</h1>")
gr.HTML("<h3 style='text-align: center;'>Asisten analisis CSV untuk berbagai kebutuhan</h3>")
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Step 1: Choose AI Model")
model_dropdown = gr.Dropdown(
label="Model",
choices=model_choices,
value=default_model,
interactive=True
)
model_info = gr.Markdown(
value=f"**{default_model}**: {MODEL_CONFIG[default_model]['description']}"
)
with gr.Group():
gr.Markdown("### Step 2: Upload and Process CSV")
file_input = gr.File(
label="Upload CSV Anda",
file_types=[".csv"]
)
process_button = gr.Button("Process CSV")
reset_button = gr.Button("Reset Session (To Change Model)")
with gr.Column(scale=2):
chatbot_interface = gr.Chatbot(
label="Chat History",
# type="messages",
height=400
)
message_input = gr.Textbox(
label="Type your message",
placeholder="Ask questions about your CSV data...",
lines=2
)
submit_button = gr.Button("Send")
clear_button = gr.Button("Clear Chat")
# Update model info when selection changes
def update_model_info(model_key):
return f"**{model_key}**: {MODEL_CONFIG[model_key]['description']}"
model_dropdown.change(
fn=update_model_info,
inputs=[model_dropdown],
outputs=[model_info]
)
# Process file handler - disables model selection after file is processed
def handle_process_file(file, model_key, sess_id):
if file is None:
return None, None, False, "Please upload a CSV file first."
try:
chatbot = ChatBot(sess_id, model_key)
result = chatbot.process_file(file)
return chatbot, True, [(None, result)]
except Exception as e:
import traceback
print(f"Error processing file with {model_key}: {str(e)}")
print(traceback.format_exc())
error_msg = f"Error with model {model_key}: {str(e)}\n\nPlease try another model."
return None, False, [(None, error_msg)]
process_button.click(
fn=handle_process_file,
inputs=[file_input, model_dropdown, session_id],
outputs=[chatbot_state, model_selected, chatbot_interface]
).then(
# Disable model dropdown after processing file
fn=lambda selected: gr.update(interactive=not selected),
inputs=[model_selected],
outputs=[model_dropdown]
)
# Reset handler - enables model selection again
def reset_session():
return None, False, [], gr.update(interactive=True)
reset_button.click(
fn=reset_session,
inputs=[],
outputs=[chatbot_state, model_selected, chatbot_interface, model_dropdown]
)
# Chat handlers
def user_message_submitted(message, history, chatbot, sess_id):
history = history + [(message, None)]
return history, "", chatbot, sess_id
def bot_response(history, chatbot, sess_id):
if chatbot is None:
chatbot = ChatBot(sess_id)
history[-1] = (history[-1][0], "Please upload a CSV file first.")
return chatbot, history
user_message = history[-1][0]
response = chatbot.chat(user_message, history[:-1])
history[-1] = (user_message, response)
return chatbot, history
submit_button.click(
fn=user_message_submitted,
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
).then(
fn=bot_response,
inputs=[chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_state, chatbot_interface]
)
message_input.submit(
fn=user_message_submitted,
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
).then(
fn=bot_response,
inputs=[chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_state, chatbot_interface]
)
# Clear chat handler
def handle_clear_chat(chatbot):
if chatbot is not None:
chatbot.chat_history = []
return chatbot, []
clear_button.click(
fn=handle_clear_chat,
inputs=[chatbot_state],
outputs=[chatbot_state, chatbot_interface]
)
return interface
# Launch the interface
demo = create_gradio_interface()
demo.launch(share=True) |