hmrizal commited on
Commit
3353605
·
verified ·
1 Parent(s): 442d74f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +537 -0
app.py ADDED
@@ -0,0 +1,537 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import uuid
4
+ import threading
5
+ import pandas as pd
6
+ import torch
7
+ from langchain.document_loaders import CSVLoader
8
+ from langchain.embeddings import HuggingFaceEmbeddings
9
+ from langchain.vectorstores import FAISS
10
+ from langchain.llms import HuggingFacePipeline
11
+ from langchain.chains import LLMChain
12
+ from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration, pipeline
13
+ from langchain.prompts import PromptTemplate
14
+ import time
15
+
16
+ # Global model cache
17
+ MODEL_CACHE = {
18
+ "model": None,
19
+ "tokenizer": None,
20
+ "init_lock": threading.Lock(),
21
+ "model_name": None
22
+ }
23
+
24
+ # Create directories for user data
25
+ os.makedirs("user_data", exist_ok=True)
26
+
27
+ # Model configuration dictionary
28
+ MODEL_CONFIG = {
29
+ "Llama 2 Chat": {
30
+ "name": "TheBloke/Llama-2-7B-Chat-GGUF",
31
+ "description": "Llama 2 7B Chat model with good general performance",
32
+ "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
33
+ },
34
+ "TinyLlama Chat": {
35
+ "name": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
36
+ "description": "Compact 1.1B parameter model, fast but less powerful",
37
+ "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
38
+ },
39
+ "Mistral Instruct": {
40
+ "name": "TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
41
+ "description": "7B instruction-tuned model with excellent reasoning",
42
+ "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
43
+ },
44
+ "Phi-4 Mini Instruct": {
45
+ "name": "microsoft/Phi-4-mini-instruct",
46
+ "description": "Compact Microsoft model with strong instruction following",
47
+ "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
48
+ },
49
+ "DeepSeek Coder Instruct": {
50
+ "name": "deepseek-ai/deepseek-coder-1.3b-instruct",
51
+ "description": "1.3B model specialized for code understanding",
52
+ "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
53
+ },
54
+ "DeepSeek Lite Chat": {
55
+ "name": "deepseek-ai/DeepSeek-V2-Lite-Chat",
56
+ "description": "Light but powerful chat model from DeepSeek",
57
+ "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
58
+ },
59
+ "Qwen2.5 Coder Instruct": {
60
+ "name": "Qwen/Qwen2.5-Coder-3B-Instruct-GGUF",
61
+ "description": "3B model specialized for code and technical applications",
62
+ "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
63
+ },
64
+ "DeepSeek Distill Qwen": {
65
+ "name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
66
+ "description": "1.5B distilled model with good balance of speed and quality",
67
+ "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
68
+ },
69
+ "Flan T5 Small": {
70
+ "name": "google/flan-t5-small",
71
+ "description": "Lightweight T5 model optimized for instruction following",
72
+ "dtype": torch.float16 if torch.cuda.is_available() else torch.float32,
73
+ "is_t5": True
74
+ }
75
+ }
76
+
77
+ def initialize_model_once(model_key):
78
+ """Initialize the model once and cache it"""
79
+ with MODEL_CACHE["init_lock"]:
80
+ current_model = MODEL_CACHE["model_name"]
81
+ if MODEL_CACHE["model"] is None or current_model != model_key:
82
+ # Clear previous model from memory if any
83
+ if MODEL_CACHE["model"] is not None:
84
+ del MODEL_CACHE["model"]
85
+ del MODEL_CACHE["tokenizer"]
86
+ torch.cuda.empty_cache() if torch.cuda.is_available() else None
87
+
88
+ model_info = MODEL_CONFIG[model_key]
89
+ model_name = model_info["name"]
90
+ MODEL_CACHE["model_name"] = model_key
91
+
92
+ # Handle T5 models separately
93
+ if model_info.get("is_t5", False):
94
+ MODEL_CACHE["tokenizer"] = T5Tokenizer.from_pretrained(model_name)
95
+ MODEL_CACHE["model"] = T5ForConditionalGeneration.from_pretrained(
96
+ model_name,
97
+ torch_dtype=model_info["dtype"],
98
+ device_map="auto",
99
+ low_cpu_mem_usage=True
100
+ )
101
+ else:
102
+ # Load tokenizer and model with appropriate configuration
103
+ MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name)
104
+ MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
105
+ model_name,
106
+ torch_dtype=model_info["dtype"],
107
+ device_map="auto",
108
+ low_cpu_mem_usage=True,
109
+ trust_remote_code=True
110
+ )
111
+
112
+ return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"], model_info.get("is_t5", False)
113
+
114
+ def create_llm_pipeline(model_key):
115
+ """Create a new pipeline using the specified model"""
116
+ tokenizer, model, is_t5 = initialize_model_once(model_key)
117
+
118
+ # Create appropriate pipeline based on model type
119
+ if is_t5:
120
+ pipe = pipeline(
121
+ "text2text-generation",
122
+ model=model,
123
+ tokenizer=tokenizer,
124
+ max_new_tokens=256,
125
+ temperature=0.3,
126
+ top_p=0.9,
127
+ return_full_text=False,
128
+ )
129
+ else:
130
+ pipe = pipeline(
131
+ "text-generation",
132
+ model=model,
133
+ tokenizer=tokenizer,
134
+ max_new_tokens=256,
135
+ temperature=0.3,
136
+ top_p=0.9,
137
+ top_k=30,
138
+ repetition_penalty=1.2,
139
+ return_full_text=False,
140
+ )
141
+
142
+ # Wrap pipeline in HuggingFacePipeline for LangChain compatibility
143
+ return HuggingFacePipeline(pipeline=pipe)
144
+
145
+ def create_conversational_chain(db, file_path, model_key):
146
+ llm = create_llm_pipeline(model_key)
147
+
148
+ # Load the file into pandas to enable code execution for data analysis
149
+ df = pd.read_csv(file_path)
150
+
151
+ # Create improved prompt template that focuses on direct answers, not code
152
+ template = """
153
+ Berikut ini adalah informasi tentang file CSV:
154
+
155
+ Kolom-kolom dalam file: {columns}
156
+
157
+ Beberapa baris pertama:
158
+ {sample_data}
159
+
160
+ Konteks tambahan dari vector database:
161
+ {context}
162
+
163
+ Pertanyaan: {question}
164
+
165
+ INSTRUKSI PENTING:
166
+ 1. Jangan tampilkan kode Python, berikan jawaban langsung dalam Bahasa Indonesia.
167
+ 2. Jika pertanyaan terkait statistik data (rata-rata, maksimum dll), lakukan perhitungan dan berikan hasilnya.
168
+ 3. Jawaban harus singkat, jelas dan akurat berdasarkan data yang ada.
169
+ 4. Gunakan format yang sesuai untuk angka (desimal 2 digit untuk nilai non-integer).
170
+ 5. Jangan menyebutkan proses perhitungan, fokus pada hasil akhir.
171
+
172
+ Jawaban:
173
+ """
174
+
175
+ PROMPT = PromptTemplate(
176
+ template=template,
177
+ input_variables=["columns", "sample_data", "context", "question"]
178
+ )
179
+
180
+ # Create retriever
181
+ retriever = db.as_retriever(search_kwargs={"k": 3}) # Reduced k for better performance
182
+
183
+ # Process query with better error handling
184
+ def process_query(query, chat_history):
185
+ try:
186
+ # Get information from dataframe for context
187
+ columns_str = ", ".join(df.columns.tolist())
188
+ sample_data = df.head(2).to_string() # Reduced to 2 rows for performance
189
+
190
+ # Get context from vector database
191
+ docs = retriever.get_relevant_documents(query)
192
+ context = "\n\n".join([doc.page_content for doc in docs])
193
+
194
+ # Dynamically calculate answers for common statistical queries
195
+ def preprocess_query():
196
+ query_lower = query.lower()
197
+ result = None
198
+
199
+ # Handle statistical queries directly
200
+ if "rata-rata" in query_lower or "mean" in query_lower or "average" in query_lower:
201
+ for col in df.columns:
202
+ if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
203
+ try:
204
+ result = f"Rata-rata {col} adalah {df[col].mean():.2f}"
205
+ except:
206
+ pass
207
+
208
+ elif "maksimum" in query_lower or "max" in query_lower or "tertinggi" in query_lower:
209
+ for col in df.columns:
210
+ if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
211
+ try:
212
+ result = f"Nilai maksimum {col} adalah {df[col].max():.2f}"
213
+ except:
214
+ pass
215
+
216
+ elif "minimum" in query_lower or "min" in query_lower or "terendah" in query_lower:
217
+ for col in df.columns:
218
+ if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
219
+ try:
220
+ result = f"Nilai minimum {col} adalah {df[col].min():.2f}"
221
+ except:
222
+ pass
223
+
224
+ elif "total" in query_lower or "jumlah" in query_lower or "sum" in query_lower:
225
+ for col in df.columns:
226
+ if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
227
+ try:
228
+ result = f"Total {col} adalah {df[col].sum():.2f}"
229
+ except:
230
+ pass
231
+
232
+ elif "baris" in query_lower or "jumlah data" in query_lower or "row" in query_lower:
233
+ result = f"Jumlah baris data adalah {len(df)}"
234
+
235
+ elif "kolom" in query_lower or "field" in query_lower:
236
+ if "nama" in query_lower or "list" in query_lower or "sebutkan" in query_lower:
237
+ result = f"Kolom dalam data: {', '.join(df.columns.tolist())}"
238
+
239
+ return result
240
+
241
+ # Try direct calculation first
242
+ direct_answer = preprocess_query()
243
+ if direct_answer:
244
+ return {"answer": direct_answer}
245
+
246
+ # If no direct calculation, use the LLM
247
+ chain = LLMChain(llm=llm, prompt=PROMPT)
248
+ raw_result = chain.run(
249
+ columns=columns_str,
250
+ sample_data=sample_data,
251
+ context=context,
252
+ question=query
253
+ )
254
+
255
+ # Clean the result
256
+ cleaned_result = raw_result.strip()
257
+
258
+ # If result is empty after cleaning, use a fallback
259
+ if not cleaned_result:
260
+ return {"answer": "Tidak dapat memproses jawaban. Silakan coba pertanyaan lain."}
261
+
262
+ return {"answer": cleaned_result}
263
+ except Exception as e:
264
+ import traceback
265
+ print(f"Error in process_query: {str(e)}")
266
+ print(traceback.format_exc())
267
+ return {"answer": f"Terjadi kesalahan saat memproses pertanyaan: {str(e)}"}
268
+
269
+ return process_query
270
+
271
+ class ChatBot:
272
+ def __init__(self, session_id, model_key="DeepSeek Coder Instruct"):
273
+ self.session_id = session_id
274
+ self.chat_history = []
275
+ self.chain = None
276
+ self.user_dir = f"user_data/{session_id}"
277
+ self.csv_file_path = None
278
+ self.model_key = model_key
279
+ os.makedirs(self.user_dir, exist_ok=True)
280
+
281
+ def process_file(self, file, model_key=None):
282
+ if model_key:
283
+ self.model_key = model_key
284
+
285
+ if file is None:
286
+ return "Mohon upload file CSV terlebih dahulu."
287
+
288
+ try:
289
+ # Handle file from Gradio
290
+ file_path = file.name if hasattr(file, 'name') else str(file)
291
+ self.csv_file_path = file_path
292
+
293
+ # Copy to user directory
294
+ user_file_path = f"{self.user_dir}/uploaded.csv"
295
+
296
+ # Verify the CSV can be loaded
297
+ try:
298
+ df = pd.read_csv(file_path)
299
+ print(f"CSV verified: {df.shape[0]} rows, {len(df.columns)} columns")
300
+
301
+ # Save a copy in user directory
302
+ df.to_csv(user_file_path, index=False)
303
+ self.csv_file_path = user_file_path
304
+ except Exception as e:
305
+ return f"Error membaca CSV: {str(e)}"
306
+
307
+ # Load document with reduced chunk size for better memory usage
308
+ try:
309
+ loader = CSVLoader(file_path=file_path, encoding="utf-8", csv_args={
310
+ 'delimiter': ','})
311
+ data = loader.load()
312
+ print(f"Documents loaded: {len(data)}")
313
+ except Exception as e:
314
+ return f"Error loading documents: {str(e)}"
315
+
316
+ # Create vector database with optimized settings
317
+ try:
318
+ db_path = f"{self.user_dir}/db_faiss"
319
+
320
+ # Use CPU-friendly embeddings with smaller dimensions
321
+ embeddings = HuggingFaceEmbeddings(
322
+ model_name='sentence-transformers/all-MiniLM-L6-v2',
323
+ model_kwargs={'device': 'cpu'}
324
+ )
325
+
326
+ db = FAISS.from_documents(data, embeddings)
327
+ db.save_local(db_path)
328
+ print(f"Vector database created at {db_path}")
329
+ except Exception as e:
330
+ return f"Error creating vector database: {str(e)}"
331
+
332
+ # Create custom chain
333
+ try:
334
+ self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key)
335
+ print(f"Chain created successfully using model: {self.model_key}")
336
+ except Exception as e:
337
+ return f"Error creating chain: {str(e)}"
338
+
339
+ # Add basic file info to chat history for context
340
+ file_info = f"CSV berhasil dimuat dengan {df.shape[0]} baris dan {len(df.columns)} kolom menggunakan model {self.model_key}. Kolom: {', '.join(df.columns.tolist())}"
341
+ self.chat_history.append(("System", file_info))
342
+
343
+ return f"File CSV berhasil diproses dengan model {self.model_key}! Anda dapat mulai chat dengan model untuk analisis data."
344
+ except Exception as e:
345
+ import traceback
346
+ print(traceback.format_exc())
347
+ return f"Error pemrosesan file: {str(e)}"
348
+
349
+ def change_model(self, model_key):
350
+ """Change the model being used and recreate the chain if necessary"""
351
+ if model_key == self.model_key:
352
+ return f"Model {model_key} sudah digunakan."
353
+
354
+ self.model_key = model_key
355
+
356
+ # If we have an active session with a file already loaded, recreate the chain
357
+ if self.csv_file_path:
358
+ try:
359
+ # Load existing database
360
+ db_path = f"{self.user_dir}/db_faiss"
361
+ embeddings = HuggingFaceEmbeddings(
362
+ model_name='sentence-transformers/all-MiniLM-L6-v2',
363
+ model_kwargs={'device': 'cpu'}
364
+ )
365
+ db = FAISS.load_local(db_path, embeddings)
366
+
367
+ # Create new chain with the selected model
368
+ self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key)
369
+
370
+ return f"Model berhasil diubah ke {model_key}."
371
+ except Exception as e:
372
+ return f"Error mengubah model: {str(e)}"
373
+ else:
374
+ return f"Model diubah ke {model_key}. Silakan upload file CSV untuk memulai."
375
+
376
+ def chat(self, message, history):
377
+ if self.chain is None:
378
+ return "Mohon upload file CSV terlebih dahulu."
379
+
380
+ try:
381
+ # Process the question with the chain
382
+ result = self.chain(message, self.chat_history)
383
+
384
+ # Get the answer with fallback
385
+ answer = result.get("answer", "Maaf, tidak dapat menghasilkan jawaban. Silakan coba pertanyaan lain.")
386
+
387
+ # Ensure we never return empty
388
+ if not answer or answer.strip() == "":
389
+ answer = "Maaf, tidak dapat menghasilkan jawaban yang sesuai. Silakan coba pertanyaan lain."
390
+
391
+ # Update internal chat history
392
+ self.chat_history.append((message, answer))
393
+
394
+ # Return just the answer for Gradio
395
+ return answer
396
+ except Exception as e:
397
+ import traceback
398
+ print(traceback.format_exc())
399
+ return f"Error: {str(e)}"
400
+
401
+ # UI Code
402
+ def create_gradio_interface():
403
+ with gr.Blocks(title="Chat with CSV using AI Models") as interface:
404
+ session_id = gr.State(lambda: str(uuid.uuid4()))
405
+ chatbot_state = gr.State(lambda: None)
406
+
407
+ # Get model choices
408
+ model_choices = list(MODEL_CONFIG.keys())
409
+ default_model = "DeepSeek Coder Instruct" # Default model
410
+
411
+ gr.HTML("<h1 style='text-align: center;'>Chat with CSV using AI Models</h1>")
412
+ gr.HTML("<h3 style='text-align: center;'>Asisten analisis CSV untuk berbagai kebutuhan</h3>")
413
+
414
+ with gr.Row():
415
+ with gr.Column(scale=1):
416
+ file_input = gr.File(
417
+ label="Upload CSV Anda",
418
+ file_types=[".csv"]
419
+ )
420
+
421
+ # Model selection accordion BEFORE process button
422
+ with gr.Accordion("Pilih Model AI", open=True):
423
+ model_dropdown = gr.Dropdown(
424
+ label="Model",
425
+ choices=model_choices,
426
+ value=default_model
427
+ )
428
+ model_info = gr.Markdown(
429
+ value=f"**{default_model}**: {MODEL_CONFIG[default_model]['description']}"
430
+ )
431
+
432
+ # Process button AFTER the accordion
433
+ process_button = gr.Button("Proses CSV")
434
+
435
+ with gr.Column(scale=2):
436
+ chatbot_interface = gr.Chatbot(
437
+ label="Riwayat Chat",
438
+ height=400
439
+ )
440
+ message_input = gr.Textbox(
441
+ label="Ketik pesan Anda",
442
+ placeholder="Tanyakan tentang data CSV Anda...",
443
+ lines=2
444
+ )
445
+ submit_button = gr.Button("Kirim")
446
+ clear_button = gr.Button("Bersihkan Chat")
447
+
448
+ # Update model info when selection changes
449
+ def update_model_info(model_key):
450
+ return f"**{model_key}**: {MODEL_CONFIG[model_key]['description']}"
451
+
452
+ model_dropdown.change(
453
+ fn=update_model_info,
454
+ inputs=[model_dropdown],
455
+ outputs=[model_info]
456
+ )
457
+
458
+ # Process file handler
459
+ def handle_process_file(file, model_key, sess_id):
460
+ chatbot = ChatBot(sess_id, model_key)
461
+ result = chatbot.process_file(file)
462
+ return chatbot, [(None, result)]
463
+
464
+ process_button.click(
465
+ fn=handle_process_file,
466
+ inputs=[file_input, model_dropdown, session_id],
467
+ outputs=[chatbot_state, chatbot_interface]
468
+ )
469
+
470
+ # Change model handler
471
+ def handle_model_change(model_key, chatbot, sess_id):
472
+ if chatbot is None:
473
+ chatbot = ChatBot(sess_id, model_key)
474
+ return chatbot, [(None, f"Model diatur ke {model_key}. Silakan upload file CSV.")]
475
+
476
+ result = chatbot.change_model(model_key)
477
+ return chatbot, chatbot.chat_history + [(None, result)]
478
+
479
+ model_dropdown.change(
480
+ fn=handle_model_change,
481
+ inputs=[model_dropdown, chatbot_state, session_id],
482
+ outputs=[chatbot_state, chatbot_interface]
483
+ )
484
+
485
+ # Chat handlers
486
+ def user_message_submitted(message, history, chatbot, sess_id):
487
+ history = history + [(message, None)]
488
+ return history, "", chatbot, sess_id
489
+
490
+ def bot_response(history, chatbot, sess_id):
491
+ if chatbot is None:
492
+ chatbot = ChatBot(sess_id)
493
+ history[-1] = (history[-1][0], "Mohon upload file CSV terlebih dahulu.")
494
+ return chatbot, history
495
+
496
+ user_message = history[-1][0]
497
+ response = chatbot.chat(user_message, history[:-1])
498
+ history[-1] = (user_message, response)
499
+ return chatbot, history
500
+
501
+ submit_button.click(
502
+ fn=user_message_submitted,
503
+ inputs=[message_input, chatbot_interface, chatbot_state, session_id],
504
+ outputs=[chatbot_interface, message_input, chatbot_state, session_id]
505
+ ).then(
506
+ fn=bot_response,
507
+ inputs=[chatbot_interface, chatbot_state, session_id],
508
+ outputs=[chatbot_state, chatbot_interface]
509
+ )
510
+
511
+ message_input.submit(
512
+ fn=user_message_submitted,
513
+ inputs=[message_input, chatbot_interface, chatbot_state, session_id],
514
+ outputs=[chatbot_interface, message_input, chatbot_state, session_id]
515
+ ).then(
516
+ fn=bot_response,
517
+ inputs=[chatbot_interface, chatbot_state, session_id],
518
+ outputs=[chatbot_state, chatbot_interface]
519
+ )
520
+
521
+ # Clear chat handler
522
+ def handle_clear_chat(chatbot):
523
+ if chatbot is not None:
524
+ chatbot.chat_history = []
525
+ return chatbot, []
526
+
527
+ clear_button.click(
528
+ fn=handle_clear_chat,
529
+ inputs=[chatbot_state],
530
+ outputs=[chatbot_state, chatbot_interface]
531
+ )
532
+
533
+ return interface
534
+
535
+ # Launch the interface
536
+ demo = create_gradio_interface()
537
+ demo.launch(share=True)