Spaces:
Sleeping
Sleeping
update change_model, process_file, create_llm_pipeline, explicit button to change model
Browse files
app.py
CHANGED
|
@@ -113,35 +113,45 @@ def initialize_model_once(model_key):
|
|
| 113 |
|
| 114 |
def create_llm_pipeline(model_key):
|
| 115 |
"""Create a new pipeline using the specified model"""
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
def create_conversational_chain(db, file_path, model_key):
|
| 146 |
llm = create_llm_pipeline(model_key)
|
| 147 |
|
|
@@ -281,14 +291,16 @@ class ChatBot:
|
|
| 281 |
def process_file(self, file, model_key=None):
|
| 282 |
if model_key:
|
| 283 |
self.model_key = model_key
|
| 284 |
-
|
| 285 |
if file is None:
|
| 286 |
return "Mohon upload file CSV terlebih dahulu."
|
| 287 |
|
| 288 |
try:
|
|
|
|
| 289 |
# Handle file from Gradio
|
| 290 |
file_path = file.name if hasattr(file, 'name') else str(file)
|
| 291 |
self.csv_file_path = file_path
|
|
|
|
| 292 |
|
| 293 |
# Copy to user directory
|
| 294 |
user_file_path = f"{self.user_dir}/uploaded.csv"
|
|
@@ -301,22 +313,25 @@ class ChatBot:
|
|
| 301 |
# Save a copy in user directory
|
| 302 |
df.to_csv(user_file_path, index=False)
|
| 303 |
self.csv_file_path = user_file_path
|
|
|
|
| 304 |
except Exception as e:
|
|
|
|
| 305 |
return f"Error membaca CSV: {str(e)}"
|
| 306 |
|
| 307 |
# Load document with reduced chunk size for better memory usage
|
| 308 |
try:
|
| 309 |
-
loader = CSVLoader(file_path=
|
| 310 |
'delimiter': ','})
|
| 311 |
data = loader.load()
|
| 312 |
print(f"Documents loaded: {len(data)}")
|
| 313 |
except Exception as e:
|
|
|
|
| 314 |
return f"Error loading documents: {str(e)}"
|
| 315 |
|
| 316 |
# Create vector database with optimized settings
|
| 317 |
try:
|
| 318 |
db_path = f"{self.user_dir}/db_faiss"
|
| 319 |
-
|
| 320 |
# Use CPU-friendly embeddings with smaller dimensions
|
| 321 |
embeddings = HuggingFaceEmbeddings(
|
| 322 |
model_name='sentence-transformers/all-MiniLM-L6-v2',
|
|
@@ -327,13 +342,18 @@ class ChatBot:
|
|
| 327 |
db.save_local(db_path)
|
| 328 |
print(f"Vector database created at {db_path}")
|
| 329 |
except Exception as e:
|
|
|
|
| 330 |
return f"Error creating vector database: {str(e)}"
|
| 331 |
|
| 332 |
# Create custom chain
|
| 333 |
try:
|
|
|
|
| 334 |
self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key)
|
| 335 |
-
print(
|
| 336 |
except Exception as e:
|
|
|
|
|
|
|
|
|
|
| 337 |
return f"Error creating chain: {str(e)}"
|
| 338 |
|
| 339 |
# Add basic file info to chat history for context
|
|
@@ -348,32 +368,54 @@ class ChatBot:
|
|
| 348 |
|
| 349 |
def change_model(self, model_key):
|
| 350 |
"""Change the model being used and recreate the chain if necessary"""
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
self.model_key = model_key
|
| 355 |
-
|
| 356 |
-
# If we have an active session with a file already loaded, recreate the chain
|
| 357 |
-
if self.csv_file_path:
|
| 358 |
-
try:
|
| 359 |
-
# Load existing database
|
| 360 |
-
db_path = f"{self.user_dir}/db_faiss"
|
| 361 |
-
embeddings = HuggingFaceEmbeddings(
|
| 362 |
-
model_name='sentence-transformers/all-MiniLM-L6-v2',
|
| 363 |
-
model_kwargs={'device': 'cpu'}
|
| 364 |
-
)
|
| 365 |
-
|
| 366 |
-
# Tambahkan flag allow_dangerous_deserialization=True
|
| 367 |
-
db = FAISS.load_local(db_path, embeddings, allow_dangerous_deserialization=True)
|
| 368 |
-
|
| 369 |
-
# Create new chain with the selected model
|
| 370 |
-
self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key)
|
| 371 |
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
|
| 378 |
def chat(self, message, history):
|
| 379 |
if self.chain is None:
|
|
@@ -430,6 +472,7 @@ def create_gradio_interface():
|
|
| 430 |
model_info = gr.Markdown(
|
| 431 |
value=f"**{default_model}**: {MODEL_CONFIG[default_model]['description']}"
|
| 432 |
)
|
|
|
|
| 433 |
|
| 434 |
# Process button AFTER the accordion
|
| 435 |
process_button = gr.Button("Proses CSV")
|
|
@@ -478,7 +521,7 @@ def create_gradio_interface():
|
|
| 478 |
result = chatbot.change_model(model_key)
|
| 479 |
return chatbot, chatbot.chat_history + [(None, result)]
|
| 480 |
|
| 481 |
-
|
| 482 |
fn=handle_model_change,
|
| 483 |
inputs=[model_dropdown, chatbot_state, session_id],
|
| 484 |
outputs=[chatbot_state, chatbot_interface]
|
|
|
|
| 113 |
|
| 114 |
def create_llm_pipeline(model_key):
|
| 115 |
"""Create a new pipeline using the specified model"""
|
| 116 |
+
try:
|
| 117 |
+
print(f"Creating pipeline for model: {model_key}")
|
| 118 |
+
tokenizer, model, is_t5 = initialize_model_once(model_key)
|
| 119 |
+
|
| 120 |
+
# Create appropriate pipeline based on model type
|
| 121 |
+
if is_t5:
|
| 122 |
+
print("Creating T5 pipeline")
|
| 123 |
+
pipe = pipeline(
|
| 124 |
+
"text2text-generation",
|
| 125 |
+
model=model,
|
| 126 |
+
tokenizer=tokenizer,
|
| 127 |
+
max_new_tokens=256,
|
| 128 |
+
temperature=0.3,
|
| 129 |
+
top_p=0.9,
|
| 130 |
+
return_full_text=False,
|
| 131 |
+
)
|
| 132 |
+
else:
|
| 133 |
+
print("Creating causal LM pipeline")
|
| 134 |
+
pipe = pipeline(
|
| 135 |
+
"text-generation",
|
| 136 |
+
model=model,
|
| 137 |
+
tokenizer=tokenizer,
|
| 138 |
+
max_new_tokens=256,
|
| 139 |
+
temperature=0.3,
|
| 140 |
+
top_p=0.9,
|
| 141 |
+
top_k=30,
|
| 142 |
+
repetition_penalty=1.2,
|
| 143 |
+
return_full_text=False,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
print("Pipeline created successfully")
|
| 147 |
+
# Wrap pipeline in HuggingFacePipeline for LangChain compatibility
|
| 148 |
+
return HuggingFacePipeline(pipeline=pipe)
|
| 149 |
+
except Exception as e:
|
| 150 |
+
import traceback
|
| 151 |
+
print(f"Error creating pipeline: {str(e)}")
|
| 152 |
+
print(traceback.format_exc())
|
| 153 |
+
raise
|
| 154 |
+
|
| 155 |
def create_conversational_chain(db, file_path, model_key):
|
| 156 |
llm = create_llm_pipeline(model_key)
|
| 157 |
|
|
|
|
| 291 |
def process_file(self, file, model_key=None):
|
| 292 |
if model_key:
|
| 293 |
self.model_key = model_key
|
| 294 |
+
|
| 295 |
if file is None:
|
| 296 |
return "Mohon upload file CSV terlebih dahulu."
|
| 297 |
|
| 298 |
try:
|
| 299 |
+
print(f"Processing file using model: {self.model_key}")
|
| 300 |
# Handle file from Gradio
|
| 301 |
file_path = file.name if hasattr(file, 'name') else str(file)
|
| 302 |
self.csv_file_path = file_path
|
| 303 |
+
print(f"CSV file path: {file_path}")
|
| 304 |
|
| 305 |
# Copy to user directory
|
| 306 |
user_file_path = f"{self.user_dir}/uploaded.csv"
|
|
|
|
| 313 |
# Save a copy in user directory
|
| 314 |
df.to_csv(user_file_path, index=False)
|
| 315 |
self.csv_file_path = user_file_path
|
| 316 |
+
print(f"CSV saved to {user_file_path}")
|
| 317 |
except Exception as e:
|
| 318 |
+
print(f"Error reading CSV: {str(e)}")
|
| 319 |
return f"Error membaca CSV: {str(e)}"
|
| 320 |
|
| 321 |
# Load document with reduced chunk size for better memory usage
|
| 322 |
try:
|
| 323 |
+
loader = CSVLoader(file_path=user_file_path, encoding="utf-8", csv_args={
|
| 324 |
'delimiter': ','})
|
| 325 |
data = loader.load()
|
| 326 |
print(f"Documents loaded: {len(data)}")
|
| 327 |
except Exception as e:
|
| 328 |
+
print(f"Error loading documents: {str(e)}")
|
| 329 |
return f"Error loading documents: {str(e)}"
|
| 330 |
|
| 331 |
# Create vector database with optimized settings
|
| 332 |
try:
|
| 333 |
db_path = f"{self.user_dir}/db_faiss"
|
| 334 |
+
|
| 335 |
# Use CPU-friendly embeddings with smaller dimensions
|
| 336 |
embeddings = HuggingFaceEmbeddings(
|
| 337 |
model_name='sentence-transformers/all-MiniLM-L6-v2',
|
|
|
|
| 342 |
db.save_local(db_path)
|
| 343 |
print(f"Vector database created at {db_path}")
|
| 344 |
except Exception as e:
|
| 345 |
+
print(f"Error creating vector database: {str(e)}")
|
| 346 |
return f"Error creating vector database: {str(e)}"
|
| 347 |
|
| 348 |
# Create custom chain
|
| 349 |
try:
|
| 350 |
+
print(f"Creating conversation chain with model: {self.model_key}")
|
| 351 |
self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key)
|
| 352 |
+
print("Chain created successfully")
|
| 353 |
except Exception as e:
|
| 354 |
+
import traceback
|
| 355 |
+
print(f"Error creating chain: {str(e)}")
|
| 356 |
+
print(traceback.format_exc())
|
| 357 |
return f"Error creating chain: {str(e)}"
|
| 358 |
|
| 359 |
# Add basic file info to chat history for context
|
|
|
|
| 368 |
|
| 369 |
def change_model(self, model_key):
|
| 370 |
"""Change the model being used and recreate the chain if necessary"""
|
| 371 |
+
try:
|
| 372 |
+
if model_key == self.model_key:
|
| 373 |
+
return f"Model {model_key} sudah digunakan."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
|
| 375 |
+
print(f"Changing model from {self.model_key} to {model_key}")
|
| 376 |
+
self.model_key = model_key
|
| 377 |
+
|
| 378 |
+
# If we have an active session with a file already loaded, recreate the chain
|
| 379 |
+
if self.csv_file_path and os.path.exists(self.csv_file_path):
|
| 380 |
+
try:
|
| 381 |
+
# Load existing database
|
| 382 |
+
db_path = f"{self.user_dir}/db_faiss"
|
| 383 |
+
if not os.path.exists(db_path):
|
| 384 |
+
return f"Error: Database tidak ditemukan. Silakan upload file CSV kembali."
|
| 385 |
+
|
| 386 |
+
print(f"Loading embeddings from {db_path}")
|
| 387 |
+
embeddings = HuggingFaceEmbeddings(
|
| 388 |
+
model_name='sentence-transformers/all-MiniLM-L6-v2',
|
| 389 |
+
model_kwargs={'device': 'cpu'}
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
# Tambahkan flag allow_dangerous_deserialization=True
|
| 393 |
+
db = FAISS.load_local(db_path, embeddings, allow_dangerous_deserialization=True)
|
| 394 |
+
print(f"FAISS database loaded successfully")
|
| 395 |
+
|
| 396 |
+
# Create new chain with the selected model
|
| 397 |
+
print(f"Creating new conversation chain with {model_key}")
|
| 398 |
+
self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key)
|
| 399 |
+
print(f"Chain created successfully")
|
| 400 |
+
|
| 401 |
+
# Add notification to chat history
|
| 402 |
+
self.chat_history.append(("System", f"Model berhasil diubah ke {model_key}."))
|
| 403 |
+
|
| 404 |
+
return f"Model berhasil diubah ke {model_key}."
|
| 405 |
+
except Exception as e:
|
| 406 |
+
import traceback
|
| 407 |
+
error_trace = traceback.format_exc()
|
| 408 |
+
print(f"Detailed error in change_model: {error_trace}")
|
| 409 |
+
return f"Error mengubah model: {str(e)}"
|
| 410 |
+
else:
|
| 411 |
+
# Just update the model key if no file is loaded yet
|
| 412 |
+
print(f"No CSV file loaded yet, just updating model preference to {model_key}")
|
| 413 |
+
return f"Model diubah ke {model_key}. Silakan upload file CSV untuk memulai."
|
| 414 |
+
except Exception as e:
|
| 415 |
+
import traceback
|
| 416 |
+
error_trace = traceback.format_exc()
|
| 417 |
+
print(f"Unexpected error in change_model: {error_trace}")
|
| 418 |
+
return f"Error tidak terduga saat mengubah model: {str(e)}"
|
| 419 |
|
| 420 |
def chat(self, message, history):
|
| 421 |
if self.chain is None:
|
|
|
|
| 472 |
model_info = gr.Markdown(
|
| 473 |
value=f"**{default_model}**: {MODEL_CONFIG[default_model]['description']}"
|
| 474 |
)
|
| 475 |
+
change_model_button = gr.Button("Terapkan Perubahan Model")
|
| 476 |
|
| 477 |
# Process button AFTER the accordion
|
| 478 |
process_button = gr.Button("Proses CSV")
|
|
|
|
| 521 |
result = chatbot.change_model(model_key)
|
| 522 |
return chatbot, chatbot.chat_history + [(None, result)]
|
| 523 |
|
| 524 |
+
change_model_button.click(
|
| 525 |
fn=handle_model_change,
|
| 526 |
inputs=[model_dropdown, chatbot_state, session_id],
|
| 527 |
outputs=[chatbot_state, chatbot_interface]
|