Spaces:
Running
Running
title: README | |
emoji: 🏢 | |
colorFrom: purple | |
colorTo: gray | |
sdk: static | |
pinned: false | |
The goal of this repository is to store the different graph datasets currently available as benchmarks, to provide them in an homogeneous and easily loadable way. For example, to load them in PyGeometric, you can do the following: | |
<br><br><small> | |
```python | |
from datasets import load_dataset | |
from torch_geometric.data import Data | |
from torch_geometric.loader import DataLoader | |
graphs_dataset = load_dataset("graphs-datasets/<dataset-name>") | |
graphs_list = [Data(graph) for graph in graphs_dataset["<train/valid/test>"]] | |
graphs_pygeometric = DataLoader(graph_list) | |
``` | |
</small> | |
<br><br><br> | |
Currently available graphs are: | |
<br><br> | |
<strong> Open Graph Benchmark </strong>, graph classification task: <em> ogbg-molhiv, ogbg-molpcba, ogbg-ppa, ogbg-code2 </em> <br> | |
<strong> Molecular datasets </strong>, graph regression task: <em> ZINC, AQSOL </em>, graph classification task: <em> MUTAG, PROTEINS, AIDS </em> <br> | |
<strong> MD17 molecular trajectory benchmark </strong>, graph regression task: <em> aspirin, benzene, ethanol, malonaldehyde, naphthalene, salycilic acid, toluene, uracil </em> <br> | |
<strong> Social datasets </strong>, graph classification task: <em> IMDb-B, twitch_egos, reddit_threads, deezer_ego_nets </em> <br> | |
<strong> Image datasets </strong>, graph classification task: <em> CIFAR10, MNIST </em> <br> | |
<strong> Quantum chemistry datasets </strong>, graph classification task: <em> alchemy </em> <br> | |
<strong> Synthetic dataset </strong>, graph classification task: <em> CSL </em> <br> | |
- More to come! |