File size: 1,613 Bytes
21d52e5
 
 
 
 
 
 
 
 
cebb5be
cc28f23
cebb5be
 
 
 
 
 
 
cc28f23
cebb5be
 
cc28f23
e1b3e4a
370f129
81580d4
aa16083
be45354
b69e439
81fb889
b69e439
 
 
 
e1b3e4a
81580d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
---
title: README
emoji: 🏢
colorFrom: purple
colorTo: gray
sdk: static
pinned: false
---

The goal of this repository is to store the different graph datasets currently available as benchmarks, to provide them in an homogeneous and easily loadable way. For example, to load them in PyGeometric, you can do the following:
<br><br><small>
```python
from datasets import load_dataset

from torch_geometric.data import Data
from torch_geometric.loader import DataLoader

graphs_dataset = load_dataset("graphs-datasets/<dataset-name>")
graphs_list = [Data(graph) for graph in graphs_dataset["<train/valid/test>"]]
graphs_pygeometric = DataLoader(graph_list)
```
</small>

<br><br><br>
Currently available graphs are:
<br><br>
<strong> Open Graph Benchmark </strong>, graph classification task: <em> ogbg-molhiv, ogbg-molpcba, ogbg-ppa, ogbg-code2 </em> <br>
<strong> Molecular datasets </strong>, graph regression task: <em> ZINC, AQSOL </em>, graph classification task: <em> MUTAG, PROTEINS, AIDS </em> <br>
<strong> MD17 molecular trajectory benchmark </strong>, graph regression task: <em> aspirin, benzene, ethanol, malonaldehyde, naphthalene, salycilic acid, toluene, uracil </em> <br>
<strong> Social datasets </strong>, graph classification task: <em> IMDb-B, twitch_egos, reddit_threads, deezer_ego_nets </em> <br>
<strong> Image datasets </strong>, graph classification task: <em> CIFAR10, MNIST </em> <br>
<strong> Quantum chemistry datasets </strong>, graph classification task: <em> alchemy </em> <br>
<strong> Synthetic dataset </strong>, graph classification task: <em> CSL </em> <br>

- More to come!