Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# Copyright 2025 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from typing import List | |
import torch | |
import torch.nn.functional as F | |
from langchain.embeddings.base import Embeddings | |
from transformers import AutoModel, AutoTokenizer | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
class CustomSigLipEmbeddings(Embeddings): | |
"""Custom LangChain embedding wrapper for SigLIP models with normalization. | |
It inherits from LangChain's `Embeddings` base class, ensuring it | |
implements the required `embed_documents` and `embed_query` methods.""" | |
def __init__(self, siglip_model_name: str, device: str = "cpu", normalize_embeddings: bool = True): | |
super().__init__() | |
self.tokenizer = AutoTokenizer.from_pretrained(siglip_model_name, token=HF_TOKEN) | |
self.model = AutoModel.from_pretrained(siglip_model_name, token=HF_TOKEN).to(device) | |
self.device = device | |
self.normalize_embeddings = normalize_embeddings | |
def _embed(self, texts: List[str]) -> torch.Tensor: | |
"""Helper function to generate and normalize embeddings.""" | |
inputs = self.tokenizer( | |
texts, padding="max_length", truncation=True, max_length=64, return_tensors="pt" | |
).to(self.device) | |
with torch.no_grad(): | |
text_features = self.model.get_text_features(**inputs) | |
if self.normalize_embeddings: | |
text_features = F.normalize(text_features, p=2, dim=1) | |
return text_features | |
def embed_documents(self, texts: List[str]) -> List[List[float]]: | |
"""Generate normalized embeddings for a list of documents.""" | |
return self._embed(texts).cpu().numpy().tolist() | |
def embed_query(self, text: str) -> List[float]: | |
"""Generate a normalized embedding for a single query text.""" | |
return self._embed([text])[0].cpu().numpy().tolist() | |