Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 2,366 Bytes
81cdd5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import List
import torch
import torch.nn.functional as F
from langchain.embeddings.base import Embeddings
from transformers import AutoModel, AutoTokenizer
HF_TOKEN = os.environ.get("HF_TOKEN", None)
class CustomSigLipEmbeddings(Embeddings):
"""Custom LangChain embedding wrapper for SigLIP models with normalization.
It inherits from LangChain's `Embeddings` base class, ensuring it
implements the required `embed_documents` and `embed_query` methods."""
def __init__(self, siglip_model_name: str, device: str = "cpu", normalize_embeddings: bool = True):
super().__init__()
self.tokenizer = AutoTokenizer.from_pretrained(siglip_model_name, token=HF_TOKEN)
self.model = AutoModel.from_pretrained(siglip_model_name, token=HF_TOKEN).to(device)
self.device = device
self.normalize_embeddings = normalize_embeddings
def _embed(self, texts: List[str]) -> torch.Tensor:
"""Helper function to generate and normalize embeddings."""
inputs = self.tokenizer(
texts, padding="max_length", truncation=True, max_length=64, return_tensors="pt"
).to(self.device)
with torch.no_grad():
text_features = self.model.get_text_features(**inputs)
if self.normalize_embeddings:
text_features = F.normalize(text_features, p=2, dim=1)
return text_features
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Generate normalized embeddings for a list of documents."""
return self._embed(texts).cpu().numpy().tolist()
def embed_query(self, text: str) -> List[float]:
"""Generate a normalized embedding for a single query text."""
return self._embed([text])[0].cpu().numpy().tolist()
|