# Copyright 2025 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import List import torch import torch.nn.functional as F from langchain.embeddings.base import Embeddings from transformers import AutoModel, AutoTokenizer HF_TOKEN = os.environ.get("HF_TOKEN", None) class CustomSigLipEmbeddings(Embeddings): """Custom LangChain embedding wrapper for SigLIP models with normalization. It inherits from LangChain's `Embeddings` base class, ensuring it implements the required `embed_documents` and `embed_query` methods.""" def __init__(self, siglip_model_name: str, device: str = "cpu", normalize_embeddings: bool = True): super().__init__() self.tokenizer = AutoTokenizer.from_pretrained(siglip_model_name, token=HF_TOKEN) self.model = AutoModel.from_pretrained(siglip_model_name, token=HF_TOKEN).to(device) self.device = device self.normalize_embeddings = normalize_embeddings def _embed(self, texts: List[str]) -> torch.Tensor: """Helper function to generate and normalize embeddings.""" inputs = self.tokenizer( texts, padding="max_length", truncation=True, max_length=64, return_tensors="pt" ).to(self.device) with torch.no_grad(): text_features = self.model.get_text_features(**inputs) if self.normalize_embeddings: text_features = F.normalize(text_features, p=2, dim=1) return text_features def embed_documents(self, texts: List[str]) -> List[List[float]]: """Generate normalized embeddings for a list of documents.""" return self._embed(texts).cpu().numpy().tolist() def embed_query(self, text: str) -> List[float]: """Generate a normalized embedding for a single query text.""" return self._embed([text])[0].cpu().numpy().tolist()