File size: 5,562 Bytes
6e24cbe
c0a15e9
6e24cbe
 
c0a15e9
1d20a91
 
6e24cbe
3880b98
1d20a91
ba6f4b5
c0a15e9
1d20a91
 
 
c0a15e9
77ed278
 
 
1d20a91
77ed278
1d20a91
 
 
 
 
 
77ed278
1d20a91
 
d48b729
1d20a91
 
2e5c176
1d20a91
3880b98
1d20a91
3880b98
9470add
1d20a91
9470add
 
44d2484
9470add
3880b98
 
 
 
 
 
1d20a91
 
3880b98
 
1d20a91
 
 
3880b98
 
 
 
 
c0a15e9
6e24cbe
 
 
 
 
c0a15e9
6e24cbe
 
 
 
 
 
 
 
 
 
 
1d20a91
6e24cbe
44d2484
 
 
6e24cbe
 
1d20a91
6e24cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0a15e9
 
6e24cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0a15e9
 
6e24cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d20a91
 
 
 
6e24cbe
 
c0a15e9
6e24cbe
 
1d20a91
 
 
c0a15e9
 
6e24cbe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from huggingface_hub import hf_hub_download
from optimum.quanto import freeze, qfloat8, quantize
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
import os

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Set up environment variables and device
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load VAE models
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    subfolder="vae",
    torch_dtype=dtype,
    token=huggingface_token
).to(device)

# Initialize FluxPipeline instead of DiffusionPipeline
from pipelines import FluxPipeline

pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    torch_dtype=dtype,
    vae=taef1,
    token=huggingface_token
).to(device)

# Load and fuse LoRA BEFORE quantizing
print('Loading and fusing LoRA, please wait...')
lora_path = hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=0.125)
pipe.unload_lora_weights()

# Quantize the transformer
print("Quantizing transformer")
quantize(pipe.transformer, weights=qfloat8)
freeze(pipe.transformer)

# Quantize the T5 text encoder
print("Quantizing T5 text encoder")
quantize(pipe.text_encoder_2, weights=qfloat8)
freeze(pipe.text_encoder_2)

# Move quantized components to device (if not already)
pipe.transformer.to(device)
pipe.text_encoder_2.to(device)

# Move other components to device
pipe.text_encoder.to(device, dtype=dtype)
torch.cuda.empty_cache()

@spaces.GPU(duration=75)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
            good_vae=good_vae,
        ):
            yield img, seed

examples = [
    "wbgmsst, a cat, white background",
    "wbgmsst, a warrior, white background",
    "wbgmsst, an anime girl, white background",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)  
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

demo.launch()