Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,562 Bytes
6e24cbe c0a15e9 6e24cbe c0a15e9 1d20a91 6e24cbe 3880b98 1d20a91 ba6f4b5 c0a15e9 1d20a91 c0a15e9 77ed278 1d20a91 77ed278 1d20a91 77ed278 1d20a91 d48b729 1d20a91 2e5c176 1d20a91 3880b98 1d20a91 3880b98 9470add 1d20a91 9470add 44d2484 9470add 3880b98 1d20a91 3880b98 1d20a91 3880b98 c0a15e9 6e24cbe c0a15e9 6e24cbe 1d20a91 6e24cbe 44d2484 6e24cbe 1d20a91 6e24cbe c0a15e9 6e24cbe c0a15e9 6e24cbe 1d20a91 6e24cbe c0a15e9 6e24cbe 1d20a91 c0a15e9 6e24cbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from huggingface_hub import hf_hub_download
from optimum.quanto import freeze, qfloat8, quantize
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
import os
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Set up environment variables and device
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load VAE models
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="vae",
torch_dtype=dtype,
token=huggingface_token
).to(device)
# Initialize FluxPipeline instead of DiffusionPipeline
from pipelines import FluxPipeline
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=dtype,
vae=taef1,
token=huggingface_token
).to(device)
# Load and fuse LoRA BEFORE quantizing
print('Loading and fusing LoRA, please wait...')
lora_path = hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=0.125)
pipe.unload_lora_weights()
# Quantize the transformer
print("Quantizing transformer")
quantize(pipe.transformer, weights=qfloat8)
freeze(pipe.transformer)
# Quantize the T5 text encoder
print("Quantizing T5 text encoder")
quantize(pipe.text_encoder_2, weights=qfloat8)
freeze(pipe.text_encoder_2)
# Move quantized components to device (if not already)
pipe.transformer.to(device)
pipe.text_encoder_2.to(device)
# Move other components to device
pipe.text_encoder.to(device, dtype=dtype)
torch.cuda.empty_cache()
@spaces.GPU(duration=75)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=good_vae,
):
yield img, seed
examples = [
"wbgmsst, a cat, white background",
"wbgmsst, a warrior, white background",
"wbgmsst, an anime girl, white background",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch()
|