Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
1d20a91
1
Parent(s):
3880b98
delete
Browse files- app.py +35 -30
- pipelines.py +1417 -0
app.py
CHANGED
@@ -3,37 +3,41 @@ import numpy as np
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
6 |
-
from diffusers import
|
7 |
-
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
-
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
from optimum.quanto import freeze, qfloat8, quantize
|
|
|
11 |
import os
|
12 |
|
|
|
|
|
|
|
13 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
14 |
dtype = torch.bfloat16
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
|
|
|
17 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
18 |
-
good_vae = AutoencoderKL.from_pretrained(
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
vae=taef1,
|
32 |
token=huggingface_token
|
33 |
-
)
|
34 |
|
35 |
# Load and fuse LoRA BEFORE quantizing
|
36 |
-
print('Loading and fusing
|
37 |
lora_path = hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors")
|
38 |
pipe.load_lora_weights(lora_path)
|
39 |
pipe.fuse_lora(lora_scale=0.125)
|
@@ -43,12 +47,14 @@ pipe.unload_lora_weights()
|
|
43 |
print("Quantizing transformer")
|
44 |
quantize(pipe.transformer, weights=qfloat8)
|
45 |
freeze(pipe.transformer)
|
46 |
-
pipe.transformer.to(device)
|
47 |
|
48 |
-
# Quantize T5 encoder
|
49 |
-
print("Quantizing T5")
|
50 |
quantize(pipe.text_encoder_2, weights=qfloat8)
|
51 |
freeze(pipe.text_encoder_2)
|
|
|
|
|
|
|
52 |
pipe.text_encoder_2.to(device)
|
53 |
|
54 |
# Move other components to device
|
@@ -72,14 +78,14 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
|
|
72 |
good_vae=good_vae,
|
73 |
):
|
74 |
yield img, seed
|
75 |
-
|
76 |
examples = [
|
77 |
"wbgmsst, a cat, white background",
|
78 |
"wbgmsst, a warrior, white background",
|
79 |
"wbgmsst, an anime girl, white background",
|
80 |
]
|
81 |
|
82 |
-
css="""
|
83 |
#col-container {
|
84 |
margin: 0 auto;
|
85 |
max-width: 520px;
|
@@ -139,7 +145,6 @@ with gr.Blocks(css=css) as demo:
|
|
139 |
)
|
140 |
|
141 |
with gr.Row():
|
142 |
-
|
143 |
guidance_scale = gr.Slider(
|
144 |
label="Guidance Scale",
|
145 |
minimum=1,
|
@@ -157,18 +162,18 @@ with gr.Blocks(css=css) as demo:
|
|
157 |
)
|
158 |
|
159 |
gr.Examples(
|
160 |
-
examples
|
161 |
-
fn
|
162 |
-
inputs
|
163 |
-
outputs
|
164 |
cache_examples="lazy"
|
165 |
)
|
166 |
|
167 |
gr.on(
|
168 |
triggers=[run_button.click, prompt.submit],
|
169 |
-
fn
|
170 |
-
inputs
|
171 |
-
outputs
|
172 |
)
|
173 |
|
174 |
demo.launch()
|
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
6 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
7 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
|
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
from optimum.quanto import freeze, qfloat8, quantize
|
10 |
+
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
|
11 |
import os
|
12 |
|
13 |
+
MAX_SEED = np.iinfo(np.int32).max
|
14 |
+
MAX_IMAGE_SIZE = 2048
|
15 |
+
# Set up environment variables and device
|
16 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
17 |
dtype = torch.bfloat16
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
|
20 |
+
# Load VAE models
|
21 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
22 |
+
good_vae = AutoencoderKL.from_pretrained(
|
23 |
+
"black-forest-labs/FLUX.1-dev",
|
24 |
+
subfolder="vae",
|
25 |
+
torch_dtype=dtype,
|
26 |
+
token=huggingface_token
|
27 |
+
).to(device)
|
28 |
|
29 |
+
# Initialize FluxPipeline instead of DiffusionPipeline
|
30 |
+
from pipelines import FluxPipeline
|
31 |
|
32 |
+
pipe = FluxPipeline.from_pretrained(
|
33 |
+
"black-forest-labs/FLUX.1-dev",
|
34 |
+
torch_dtype=torch.float32, # Load in full precision initially
|
35 |
+
vae=taef1,
|
|
|
36 |
token=huggingface_token
|
37 |
+
).to(device)
|
38 |
|
39 |
# Load and fuse LoRA BEFORE quantizing
|
40 |
+
print('Loading and fusing LoRA, please wait...')
|
41 |
lora_path = hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors")
|
42 |
pipe.load_lora_weights(lora_path)
|
43 |
pipe.fuse_lora(lora_scale=0.125)
|
|
|
47 |
print("Quantizing transformer")
|
48 |
quantize(pipe.transformer, weights=qfloat8)
|
49 |
freeze(pipe.transformer)
|
|
|
50 |
|
51 |
+
# Quantize the T5 text encoder
|
52 |
+
print("Quantizing T5 text encoder")
|
53 |
quantize(pipe.text_encoder_2, weights=qfloat8)
|
54 |
freeze(pipe.text_encoder_2)
|
55 |
+
|
56 |
+
# Move quantized components to device (if not already)
|
57 |
+
pipe.transformer.to(device)
|
58 |
pipe.text_encoder_2.to(device)
|
59 |
|
60 |
# Move other components to device
|
|
|
78 |
good_vae=good_vae,
|
79 |
):
|
80 |
yield img, seed
|
81 |
+
|
82 |
examples = [
|
83 |
"wbgmsst, a cat, white background",
|
84 |
"wbgmsst, a warrior, white background",
|
85 |
"wbgmsst, an anime girl, white background",
|
86 |
]
|
87 |
|
88 |
+
css = """
|
89 |
#col-container {
|
90 |
margin: 0 auto;
|
91 |
max-width: 520px;
|
|
|
145 |
)
|
146 |
|
147 |
with gr.Row():
|
|
|
148 |
guidance_scale = gr.Slider(
|
149 |
label="Guidance Scale",
|
150 |
minimum=1,
|
|
|
162 |
)
|
163 |
|
164 |
gr.Examples(
|
165 |
+
examples=examples,
|
166 |
+
fn=infer,
|
167 |
+
inputs=[prompt],
|
168 |
+
outputs=[result, seed],
|
169 |
cache_examples="lazy"
|
170 |
)
|
171 |
|
172 |
gr.on(
|
173 |
triggers=[run_button.click, prompt.submit],
|
174 |
+
fn=infer,
|
175 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
176 |
+
outputs=[result, seed]
|
177 |
)
|
178 |
|
179 |
demo.launch()
|
pipelines.py
ADDED
@@ -0,0 +1,1417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import inspect
|
3 |
+
from typing import Union, List, Optional, Dict, Any, Tuple, Callable
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline, LMSDiscreteScheduler, FluxPipeline
|
8 |
+
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
|
9 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
10 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
11 |
+
# from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_k_diffusion import ModelWrapper
|
12 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
13 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg
|
14 |
+
from diffusers.utils import is_torch_xla_available
|
15 |
+
from k_diffusion.external import CompVisVDenoiser, CompVisDenoiser
|
16 |
+
from k_diffusion.sampling import get_sigmas_karras, BrownianTreeNoiseSampler
|
17 |
+
|
18 |
+
|
19 |
+
if is_torch_xla_available():
|
20 |
+
import torch_xla.core.xla_model as xm
|
21 |
+
|
22 |
+
XLA_AVAILABLE = True
|
23 |
+
else:
|
24 |
+
XLA_AVAILABLE = False
|
25 |
+
|
26 |
+
class StableDiffusionKDiffusionXLPipeline(StableDiffusionXLPipeline):
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
vae: 'AutoencoderKL',
|
31 |
+
text_encoder: 'CLIPTextModel',
|
32 |
+
text_encoder_2: 'CLIPTextModelWithProjection',
|
33 |
+
tokenizer: 'CLIPTokenizer',
|
34 |
+
tokenizer_2: 'CLIPTokenizer',
|
35 |
+
unet: 'UNet2DConditionModel',
|
36 |
+
scheduler: 'KarrasDiffusionSchedulers',
|
37 |
+
force_zeros_for_empty_prompt: bool = True,
|
38 |
+
add_watermarker: Optional[bool] = None,
|
39 |
+
):
|
40 |
+
super().__init__(
|
41 |
+
vae=vae,
|
42 |
+
text_encoder=text_encoder,
|
43 |
+
text_encoder_2=text_encoder_2,
|
44 |
+
tokenizer=tokenizer,
|
45 |
+
tokenizer_2=tokenizer_2,
|
46 |
+
unet=unet,
|
47 |
+
scheduler=scheduler,
|
48 |
+
)
|
49 |
+
raise NotImplementedError("This pipeline is not implemented yet")
|
50 |
+
# self.sampler = None
|
51 |
+
# scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
|
52 |
+
# model = ModelWrapper(unet, scheduler.alphas_cumprod)
|
53 |
+
# if scheduler.config.prediction_type == "v_prediction":
|
54 |
+
# self.k_diffusion_model = CompVisVDenoiser(model)
|
55 |
+
# else:
|
56 |
+
# self.k_diffusion_model = CompVisDenoiser(model)
|
57 |
+
|
58 |
+
def set_scheduler(self, scheduler_type: str):
|
59 |
+
library = importlib.import_module("k_diffusion")
|
60 |
+
sampling = getattr(library, "sampling")
|
61 |
+
self.sampler = getattr(sampling, scheduler_type)
|
62 |
+
|
63 |
+
@torch.no_grad()
|
64 |
+
def __call__(
|
65 |
+
self,
|
66 |
+
prompt: Union[str, List[str]] = None,
|
67 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
68 |
+
height: Optional[int] = None,
|
69 |
+
width: Optional[int] = None,
|
70 |
+
num_inference_steps: int = 50,
|
71 |
+
denoising_end: Optional[float] = None,
|
72 |
+
guidance_scale: float = 5.0,
|
73 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
74 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
75 |
+
num_images_per_prompt: Optional[int] = 1,
|
76 |
+
eta: float = 0.0,
|
77 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
78 |
+
latents: Optional[torch.FloatTensor] = None,
|
79 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
80 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
81 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
82 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
83 |
+
output_type: Optional[str] = "pil",
|
84 |
+
return_dict: bool = True,
|
85 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
86 |
+
callback_steps: int = 1,
|
87 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
88 |
+
guidance_rescale: float = 0.0,
|
89 |
+
original_size: Optional[Tuple[int, int]] = None,
|
90 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
91 |
+
target_size: Optional[Tuple[int, int]] = None,
|
92 |
+
use_karras_sigmas: bool = False,
|
93 |
+
):
|
94 |
+
|
95 |
+
# 0. Default height and width to unet
|
96 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
97 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
98 |
+
|
99 |
+
original_size = original_size or (height, width)
|
100 |
+
target_size = target_size or (height, width)
|
101 |
+
|
102 |
+
# 1. Check inputs. Raise error if not correct
|
103 |
+
self.check_inputs(
|
104 |
+
prompt,
|
105 |
+
prompt_2,
|
106 |
+
height,
|
107 |
+
width,
|
108 |
+
callback_steps,
|
109 |
+
negative_prompt,
|
110 |
+
negative_prompt_2,
|
111 |
+
prompt_embeds,
|
112 |
+
negative_prompt_embeds,
|
113 |
+
pooled_prompt_embeds,
|
114 |
+
negative_pooled_prompt_embeds,
|
115 |
+
)
|
116 |
+
|
117 |
+
# 2. Define call parameters
|
118 |
+
if prompt is not None and isinstance(prompt, str):
|
119 |
+
batch_size = 1
|
120 |
+
elif prompt is not None and isinstance(prompt, list):
|
121 |
+
batch_size = len(prompt)
|
122 |
+
else:
|
123 |
+
batch_size = prompt_embeds.shape[0]
|
124 |
+
|
125 |
+
device = self._execution_device
|
126 |
+
|
127 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
128 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
129 |
+
# corresponds to doing no classifier free guidance.
|
130 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
131 |
+
|
132 |
+
# 3. Encode input prompt
|
133 |
+
text_encoder_lora_scale = (
|
134 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
135 |
+
)
|
136 |
+
(
|
137 |
+
prompt_embeds,
|
138 |
+
negative_prompt_embeds,
|
139 |
+
pooled_prompt_embeds,
|
140 |
+
negative_pooled_prompt_embeds,
|
141 |
+
) = self.encode_prompt(
|
142 |
+
prompt=prompt,
|
143 |
+
prompt_2=prompt_2,
|
144 |
+
device=device,
|
145 |
+
num_images_per_prompt=num_images_per_prompt,
|
146 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
147 |
+
negative_prompt=negative_prompt,
|
148 |
+
negative_prompt_2=negative_prompt_2,
|
149 |
+
prompt_embeds=prompt_embeds,
|
150 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
151 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
152 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
153 |
+
lora_scale=text_encoder_lora_scale,
|
154 |
+
)
|
155 |
+
|
156 |
+
# 4. Prepare timesteps
|
157 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
158 |
+
|
159 |
+
timesteps = self.scheduler.timesteps
|
160 |
+
|
161 |
+
# 5. Prepare latent variables
|
162 |
+
num_channels_latents = self.unet.config.in_channels
|
163 |
+
latents = self.prepare_latents(
|
164 |
+
batch_size * num_images_per_prompt,
|
165 |
+
num_channels_latents,
|
166 |
+
height,
|
167 |
+
width,
|
168 |
+
prompt_embeds.dtype,
|
169 |
+
device,
|
170 |
+
generator,
|
171 |
+
latents,
|
172 |
+
)
|
173 |
+
|
174 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
175 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
176 |
+
|
177 |
+
# 7. Prepare added time ids & embeddings
|
178 |
+
add_text_embeds = pooled_prompt_embeds
|
179 |
+
add_time_ids = self._get_add_time_ids(
|
180 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
181 |
+
)
|
182 |
+
|
183 |
+
if do_classifier_free_guidance:
|
184 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
185 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
186 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
187 |
+
|
188 |
+
prompt_embeds = prompt_embeds.to(device)
|
189 |
+
add_text_embeds = add_text_embeds.to(device)
|
190 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
191 |
+
|
192 |
+
# 8. Denoising loop
|
193 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
194 |
+
|
195 |
+
# 7.1 Apply denoising_end
|
196 |
+
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
|
197 |
+
discrete_timestep_cutoff = int(
|
198 |
+
round(
|
199 |
+
self.scheduler.config.num_train_timesteps
|
200 |
+
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
201 |
+
)
|
202 |
+
)
|
203 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
204 |
+
timesteps = timesteps[:num_inference_steps]
|
205 |
+
|
206 |
+
# 5. Prepare sigmas
|
207 |
+
if use_karras_sigmas:
|
208 |
+
sigma_min: float = self.k_diffusion_model.sigmas[0].item()
|
209 |
+
sigma_max: float = self.k_diffusion_model.sigmas[-1].item()
|
210 |
+
sigmas = get_sigmas_karras(n=num_inference_steps, sigma_min=sigma_min, sigma_max=sigma_max)
|
211 |
+
sigmas = sigmas.to(device)
|
212 |
+
else:
|
213 |
+
sigmas = self.scheduler.sigmas
|
214 |
+
sigmas = sigmas.to(prompt_embeds.dtype)
|
215 |
+
|
216 |
+
# 5. Prepare latent variables
|
217 |
+
num_channels_latents = self.unet.config.in_channels
|
218 |
+
latents = self.prepare_latents(
|
219 |
+
batch_size * num_images_per_prompt,
|
220 |
+
num_channels_latents,
|
221 |
+
height,
|
222 |
+
width,
|
223 |
+
prompt_embeds.dtype,
|
224 |
+
device,
|
225 |
+
generator,
|
226 |
+
latents,
|
227 |
+
)
|
228 |
+
|
229 |
+
latents = latents * sigmas[0]
|
230 |
+
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
|
231 |
+
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(latents.device)
|
232 |
+
|
233 |
+
# 7. Define model function
|
234 |
+
def model_fn(x, t):
|
235 |
+
latent_model_input = torch.cat([x] * 2)
|
236 |
+
t = torch.cat([t] * 2)
|
237 |
+
|
238 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
239 |
+
# noise_pred = self.unet(
|
240 |
+
# latent_model_input,
|
241 |
+
# t,
|
242 |
+
# encoder_hidden_states=prompt_embeds,
|
243 |
+
# cross_attention_kwargs=cross_attention_kwargs,
|
244 |
+
# added_cond_kwargs=added_cond_kwargs,
|
245 |
+
# return_dict=False,
|
246 |
+
# )[0]
|
247 |
+
|
248 |
+
noise_pred = self.k_diffusion_model(
|
249 |
+
latent_model_input,
|
250 |
+
t,
|
251 |
+
encoder_hidden_states=prompt_embeds,
|
252 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
253 |
+
added_cond_kwargs=added_cond_kwargs,
|
254 |
+
return_dict=False,)[0]
|
255 |
+
|
256 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
257 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
258 |
+
return noise_pred
|
259 |
+
|
260 |
+
|
261 |
+
# 8. Run k-diffusion solver
|
262 |
+
sampler_kwargs = {}
|
263 |
+
# should work without it
|
264 |
+
noise_sampler_seed = None
|
265 |
+
|
266 |
+
|
267 |
+
if "noise_sampler" in inspect.signature(self.sampler).parameters:
|
268 |
+
min_sigma, max_sigma = sigmas[sigmas > 0].min(), sigmas.max()
|
269 |
+
noise_sampler = BrownianTreeNoiseSampler(latents, min_sigma, max_sigma, noise_sampler_seed)
|
270 |
+
sampler_kwargs["noise_sampler"] = noise_sampler
|
271 |
+
|
272 |
+
latents = self.sampler(model_fn, latents, sigmas, **sampler_kwargs)
|
273 |
+
|
274 |
+
if not output_type == "latent":
|
275 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
276 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
277 |
+
else:
|
278 |
+
image = latents
|
279 |
+
has_nsfw_concept = None
|
280 |
+
|
281 |
+
if has_nsfw_concept is None:
|
282 |
+
do_denormalize = [True] * image.shape[0]
|
283 |
+
else:
|
284 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
285 |
+
|
286 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
287 |
+
|
288 |
+
# Offload last model to CPU
|
289 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
290 |
+
self.final_offload_hook.offload()
|
291 |
+
|
292 |
+
if not return_dict:
|
293 |
+
return (image,)
|
294 |
+
|
295 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
296 |
+
|
297 |
+
|
298 |
+
class CustomStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
299 |
+
|
300 |
+
def predict_noise(
|
301 |
+
self,
|
302 |
+
prompt: Union[str, List[str]] = None,
|
303 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
304 |
+
num_inference_steps: int = 50,
|
305 |
+
guidance_scale: float = 5.0,
|
306 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
307 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
308 |
+
num_images_per_prompt: Optional[int] = 1,
|
309 |
+
eta: float = 0.0,
|
310 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
311 |
+
latents: Optional[torch.FloatTensor] = None,
|
312 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
313 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
314 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
315 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
316 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
317 |
+
guidance_rescale: float = 0.0,
|
318 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
319 |
+
timestep: Optional[int] = None,
|
320 |
+
):
|
321 |
+
r"""
|
322 |
+
Function invoked when calling the pipeline for generation.
|
323 |
+
|
324 |
+
Args:
|
325 |
+
prompt (`str` or `List[str]`, *optional*):
|
326 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
327 |
+
instead.
|
328 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
329 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
330 |
+
used in both text-encoders
|
331 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
332 |
+
The height in pixels of the generated image.
|
333 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
334 |
+
The width in pixels of the generated image.
|
335 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
336 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
337 |
+
expense of slower inference.
|
338 |
+
denoising_end (`float`, *optional*):
|
339 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
340 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
341 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
342 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
343 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
344 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
345 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
346 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
347 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
348 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
349 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
350 |
+
usually at the expense of lower image quality.
|
351 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
352 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
353 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
354 |
+
less than `1`).
|
355 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
356 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
357 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
358 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
359 |
+
The number of images to generate per prompt.
|
360 |
+
eta (`float`, *optional*, defaults to 0.0):
|
361 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
362 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
363 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
364 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
365 |
+
to make generation deterministic.
|
366 |
+
latents (`torch.FloatTensor`, *optional*):
|
367 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
368 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
369 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
370 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
371 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
372 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
373 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
374 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
375 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
376 |
+
argument.
|
377 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
378 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
379 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
380 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
381 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
382 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
383 |
+
input argument.
|
384 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
385 |
+
The output format of the generate image. Choose between
|
386 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
387 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
388 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
389 |
+
of a plain tuple.
|
390 |
+
callback (`Callable`, *optional*):
|
391 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
392 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
393 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
394 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
395 |
+
called at every step.
|
396 |
+
cross_attention_kwargs (`dict`, *optional*):
|
397 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
398 |
+
`self.processor` in
|
399 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
400 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
401 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
402 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
403 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
404 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
405 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
406 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
407 |
+
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
408 |
+
explained in section 2.2 of
|
409 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
410 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
411 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
412 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
413 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
414 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
415 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
416 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
417 |
+
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
418 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
419 |
+
|
420 |
+
Examples:
|
421 |
+
|
422 |
+
Returns:
|
423 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
424 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
425 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
426 |
+
"""
|
427 |
+
# if not predict_noise:
|
428 |
+
# # call parent
|
429 |
+
# return super().__call__(
|
430 |
+
# prompt=prompt,
|
431 |
+
# prompt_2=prompt_2,
|
432 |
+
# height=height,
|
433 |
+
# width=width,
|
434 |
+
# num_inference_steps=num_inference_steps,
|
435 |
+
# denoising_end=denoising_end,
|
436 |
+
# guidance_scale=guidance_scale,
|
437 |
+
# negative_prompt=negative_prompt,
|
438 |
+
# negative_prompt_2=negative_prompt_2,
|
439 |
+
# num_images_per_prompt=num_images_per_prompt,
|
440 |
+
# eta=eta,
|
441 |
+
# generator=generator,
|
442 |
+
# latents=latents,
|
443 |
+
# prompt_embeds=prompt_embeds,
|
444 |
+
# negative_prompt_embeds=negative_prompt_embeds,
|
445 |
+
# pooled_prompt_embeds=pooled_prompt_embeds,
|
446 |
+
# negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
447 |
+
# output_type=output_type,
|
448 |
+
# return_dict=return_dict,
|
449 |
+
# callback=callback,
|
450 |
+
# callback_steps=callback_steps,
|
451 |
+
# cross_attention_kwargs=cross_attention_kwargs,
|
452 |
+
# guidance_rescale=guidance_rescale,
|
453 |
+
# original_size=original_size,
|
454 |
+
# crops_coords_top_left=crops_coords_top_left,
|
455 |
+
# target_size=target_size,
|
456 |
+
# )
|
457 |
+
|
458 |
+
# 0. Default height and width to unet
|
459 |
+
height = self.default_sample_size * self.vae_scale_factor
|
460 |
+
width = self.default_sample_size * self.vae_scale_factor
|
461 |
+
|
462 |
+
original_size = (height, width)
|
463 |
+
target_size = (height, width)
|
464 |
+
|
465 |
+
# 2. Define call parameters
|
466 |
+
if prompt is not None and isinstance(prompt, str):
|
467 |
+
batch_size = 1
|
468 |
+
elif prompt is not None and isinstance(prompt, list):
|
469 |
+
batch_size = len(prompt)
|
470 |
+
else:
|
471 |
+
batch_size = prompt_embeds.shape[0]
|
472 |
+
|
473 |
+
device = self._execution_device
|
474 |
+
|
475 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
476 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
477 |
+
# corresponds to doing no classifier free guidance.
|
478 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
479 |
+
|
480 |
+
# 3. Encode input prompt
|
481 |
+
text_encoder_lora_scale = (
|
482 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
483 |
+
)
|
484 |
+
(
|
485 |
+
prompt_embeds,
|
486 |
+
negative_prompt_embeds,
|
487 |
+
pooled_prompt_embeds,
|
488 |
+
negative_pooled_prompt_embeds,
|
489 |
+
) = self.encode_prompt(
|
490 |
+
prompt=prompt,
|
491 |
+
prompt_2=prompt_2,
|
492 |
+
device=device,
|
493 |
+
num_images_per_prompt=num_images_per_prompt,
|
494 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
495 |
+
negative_prompt=negative_prompt,
|
496 |
+
negative_prompt_2=negative_prompt_2,
|
497 |
+
prompt_embeds=prompt_embeds,
|
498 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
499 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
500 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
501 |
+
lora_scale=text_encoder_lora_scale,
|
502 |
+
)
|
503 |
+
|
504 |
+
# 4. Prepare timesteps
|
505 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
506 |
+
|
507 |
+
# 5. Prepare latent variables
|
508 |
+
num_channels_latents = self.unet.config.in_channels
|
509 |
+
latents = self.prepare_latents(
|
510 |
+
batch_size * num_images_per_prompt,
|
511 |
+
num_channels_latents,
|
512 |
+
height,
|
513 |
+
width,
|
514 |
+
prompt_embeds.dtype,
|
515 |
+
device,
|
516 |
+
generator,
|
517 |
+
latents,
|
518 |
+
)
|
519 |
+
|
520 |
+
# 7. Prepare added time ids & embeddings
|
521 |
+
add_text_embeds = pooled_prompt_embeds
|
522 |
+
add_time_ids = self._get_add_time_ids(
|
523 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
524 |
+
).to(device) # TODO DOES NOT CAST ORIGINALLY
|
525 |
+
|
526 |
+
if do_classifier_free_guidance:
|
527 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
528 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
529 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
530 |
+
|
531 |
+
prompt_embeds = prompt_embeds.to(device)
|
532 |
+
add_text_embeds = add_text_embeds.to(device)
|
533 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
534 |
+
|
535 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
536 |
+
|
537 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep)
|
538 |
+
|
539 |
+
# predict the noise residual
|
540 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
541 |
+
noise_pred = self.unet(
|
542 |
+
latent_model_input,
|
543 |
+
timestep,
|
544 |
+
encoder_hidden_states=prompt_embeds,
|
545 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
546 |
+
added_cond_kwargs=added_cond_kwargs,
|
547 |
+
return_dict=False,
|
548 |
+
)[0]
|
549 |
+
|
550 |
+
# perform guidance
|
551 |
+
if do_classifier_free_guidance:
|
552 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
553 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
554 |
+
|
555 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
556 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
557 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
558 |
+
|
559 |
+
return noise_pred
|
560 |
+
|
561 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
562 |
+
print('Called cpu offload', gpu_id)
|
563 |
+
# fuck off
|
564 |
+
pass
|
565 |
+
|
566 |
+
|
567 |
+
class CustomStableDiffusionPipeline(StableDiffusionPipeline):
|
568 |
+
|
569 |
+
# replace the call so it matches SDXL call so we can use the same code and also stop early
|
570 |
+
def __call__(
|
571 |
+
self,
|
572 |
+
prompt: Union[str, List[str]] = None,
|
573 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
574 |
+
height: Optional[int] = None,
|
575 |
+
width: Optional[int] = None,
|
576 |
+
num_inference_steps: int = 50,
|
577 |
+
denoising_end: Optional[float] = None,
|
578 |
+
guidance_scale: float = 5.0,
|
579 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
580 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
581 |
+
num_images_per_prompt: Optional[int] = 1,
|
582 |
+
eta: float = 0.0,
|
583 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
584 |
+
latents: Optional[torch.FloatTensor] = None,
|
585 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
586 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
587 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
588 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
589 |
+
output_type: Optional[str] = "pil",
|
590 |
+
return_dict: bool = True,
|
591 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
592 |
+
callback_steps: int = 1,
|
593 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
594 |
+
guidance_rescale: float = 0.0,
|
595 |
+
original_size: Optional[Tuple[int, int]] = None,
|
596 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
597 |
+
target_size: Optional[Tuple[int, int]] = None,
|
598 |
+
):
|
599 |
+
# 0. Default height and width to unet
|
600 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
601 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
602 |
+
|
603 |
+
# 1. Check inputs. Raise error if not correct
|
604 |
+
self.check_inputs(
|
605 |
+
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
606 |
+
)
|
607 |
+
|
608 |
+
# 2. Define call parameters
|
609 |
+
if prompt is not None and isinstance(prompt, str):
|
610 |
+
batch_size = 1
|
611 |
+
elif prompt is not None and isinstance(prompt, list):
|
612 |
+
batch_size = len(prompt)
|
613 |
+
else:
|
614 |
+
batch_size = prompt_embeds.shape[0]
|
615 |
+
|
616 |
+
device = self._execution_device
|
617 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
618 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
619 |
+
# corresponds to doing no classifier free guidance.
|
620 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
621 |
+
|
622 |
+
# 3. Encode input prompt
|
623 |
+
text_encoder_lora_scale = (
|
624 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
625 |
+
)
|
626 |
+
prompt_embeds = self._encode_prompt(
|
627 |
+
prompt,
|
628 |
+
device,
|
629 |
+
num_images_per_prompt,
|
630 |
+
do_classifier_free_guidance,
|
631 |
+
negative_prompt,
|
632 |
+
prompt_embeds=prompt_embeds,
|
633 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
634 |
+
lora_scale=text_encoder_lora_scale,
|
635 |
+
)
|
636 |
+
|
637 |
+
# 4. Prepare timesteps
|
638 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
639 |
+
timesteps = self.scheduler.timesteps
|
640 |
+
|
641 |
+
# 5. Prepare latent variables
|
642 |
+
num_channels_latents = self.unet.config.in_channels
|
643 |
+
latents = self.prepare_latents(
|
644 |
+
batch_size * num_images_per_prompt,
|
645 |
+
num_channels_latents,
|
646 |
+
height,
|
647 |
+
width,
|
648 |
+
prompt_embeds.dtype,
|
649 |
+
device,
|
650 |
+
generator,
|
651 |
+
latents,
|
652 |
+
)
|
653 |
+
|
654 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
655 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
656 |
+
|
657 |
+
# 7. Denoising loop
|
658 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
659 |
+
|
660 |
+
# 7.1 Apply denoising_end
|
661 |
+
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
|
662 |
+
discrete_timestep_cutoff = int(
|
663 |
+
round(
|
664 |
+
self.scheduler.config.num_train_timesteps
|
665 |
+
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
666 |
+
)
|
667 |
+
)
|
668 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
669 |
+
timesteps = timesteps[:num_inference_steps]
|
670 |
+
|
671 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
672 |
+
for i, t in enumerate(timesteps):
|
673 |
+
# expand the latents if we are doing classifier free guidance
|
674 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
675 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
676 |
+
|
677 |
+
# predict the noise residual
|
678 |
+
noise_pred = self.unet(
|
679 |
+
latent_model_input,
|
680 |
+
t,
|
681 |
+
encoder_hidden_states=prompt_embeds,
|
682 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
683 |
+
return_dict=False,
|
684 |
+
)[0]
|
685 |
+
|
686 |
+
# perform guidance
|
687 |
+
if do_classifier_free_guidance:
|
688 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
689 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
690 |
+
|
691 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
692 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
693 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
694 |
+
|
695 |
+
# compute the previous noisy sample x_t -> x_t-1
|
696 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
697 |
+
|
698 |
+
# call the callback, if provided
|
699 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
700 |
+
progress_bar.update()
|
701 |
+
if callback is not None and i % callback_steps == 0:
|
702 |
+
callback(i, t, latents)
|
703 |
+
|
704 |
+
if not output_type == "latent":
|
705 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
706 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
707 |
+
else:
|
708 |
+
image = latents
|
709 |
+
has_nsfw_concept = None
|
710 |
+
|
711 |
+
if has_nsfw_concept is None:
|
712 |
+
do_denormalize = [True] * image.shape[0]
|
713 |
+
else:
|
714 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
715 |
+
|
716 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
717 |
+
|
718 |
+
# Offload last model to CPU
|
719 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
720 |
+
self.final_offload_hook.offload()
|
721 |
+
|
722 |
+
if not return_dict:
|
723 |
+
return (image, has_nsfw_concept)
|
724 |
+
|
725 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
726 |
+
|
727 |
+
# some of the inputs are to keep it compatible with sdx
|
728 |
+
def predict_noise(
|
729 |
+
self,
|
730 |
+
prompt: Union[str, List[str]] = None,
|
731 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
732 |
+
num_inference_steps: int = 50,
|
733 |
+
guidance_scale: float = 5.0,
|
734 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
735 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
736 |
+
num_images_per_prompt: Optional[int] = 1,
|
737 |
+
eta: float = 0.0,
|
738 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
739 |
+
latents: Optional[torch.FloatTensor] = None,
|
740 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
741 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
742 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
743 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
744 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
745 |
+
guidance_rescale: float = 0.0,
|
746 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
747 |
+
timestep: Optional[int] = None,
|
748 |
+
):
|
749 |
+
|
750 |
+
# 0. Default height and width to unet
|
751 |
+
height = self.unet.config.sample_size * self.vae_scale_factor
|
752 |
+
width = self.unet.config.sample_size * self.vae_scale_factor
|
753 |
+
|
754 |
+
# 2. Define call parameters
|
755 |
+
if prompt is not None and isinstance(prompt, str):
|
756 |
+
batch_size = 1
|
757 |
+
elif prompt is not None and isinstance(prompt, list):
|
758 |
+
batch_size = len(prompt)
|
759 |
+
else:
|
760 |
+
batch_size = prompt_embeds.shape[0]
|
761 |
+
|
762 |
+
device = self._execution_device
|
763 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
764 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
765 |
+
# corresponds to doing no classifier free guidance.
|
766 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
767 |
+
|
768 |
+
# 3. Encode input prompt
|
769 |
+
text_encoder_lora_scale = (
|
770 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
771 |
+
)
|
772 |
+
prompt_embeds = self._encode_prompt(
|
773 |
+
prompt,
|
774 |
+
device,
|
775 |
+
num_images_per_prompt,
|
776 |
+
do_classifier_free_guidance,
|
777 |
+
negative_prompt,
|
778 |
+
prompt_embeds=prompt_embeds,
|
779 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
780 |
+
lora_scale=text_encoder_lora_scale,
|
781 |
+
)
|
782 |
+
|
783 |
+
# 4. Prepare timesteps
|
784 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
785 |
+
|
786 |
+
# 5. Prepare latent variables
|
787 |
+
num_channels_latents = self.unet.config.in_channels
|
788 |
+
latents = self.prepare_latents(
|
789 |
+
batch_size * num_images_per_prompt,
|
790 |
+
num_channels_latents,
|
791 |
+
height,
|
792 |
+
width,
|
793 |
+
prompt_embeds.dtype,
|
794 |
+
device,
|
795 |
+
generator,
|
796 |
+
latents,
|
797 |
+
)
|
798 |
+
|
799 |
+
# expand the latents if we are doing classifier free guidance
|
800 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
801 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep)
|
802 |
+
|
803 |
+
# predict the noise residual
|
804 |
+
noise_pred = self.unet(
|
805 |
+
latent_model_input,
|
806 |
+
timestep,
|
807 |
+
encoder_hidden_states=prompt_embeds,
|
808 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
809 |
+
return_dict=False,
|
810 |
+
)[0]
|
811 |
+
|
812 |
+
# perform guidance
|
813 |
+
if do_classifier_free_guidance:
|
814 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
815 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
816 |
+
|
817 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
818 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
819 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
820 |
+
|
821 |
+
return noise_pred
|
822 |
+
|
823 |
+
|
824 |
+
class StableDiffusionXLRefinerPipeline(StableDiffusionXLPipeline):
|
825 |
+
|
826 |
+
@torch.no_grad()
|
827 |
+
def __call__(
|
828 |
+
self,
|
829 |
+
prompt: Union[str, List[str]] = None,
|
830 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
831 |
+
height: Optional[int] = None,
|
832 |
+
width: Optional[int] = None,
|
833 |
+
num_inference_steps: int = 50,
|
834 |
+
denoising_end: Optional[float] = None,
|
835 |
+
denoising_start: Optional[float] = None,
|
836 |
+
guidance_scale: float = 5.0,
|
837 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
838 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
839 |
+
num_images_per_prompt: Optional[int] = 1,
|
840 |
+
eta: float = 0.0,
|
841 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
842 |
+
latents: Optional[torch.FloatTensor] = None,
|
843 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
844 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
845 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
846 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
847 |
+
output_type: Optional[str] = "pil",
|
848 |
+
return_dict: bool = True,
|
849 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
850 |
+
callback_steps: int = 1,
|
851 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
852 |
+
guidance_rescale: float = 0.0,
|
853 |
+
original_size: Optional[Tuple[int, int]] = None,
|
854 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
855 |
+
target_size: Optional[Tuple[int, int]] = None,
|
856 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
857 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
858 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
859 |
+
clip_skip: Optional[int] = None,
|
860 |
+
):
|
861 |
+
r"""
|
862 |
+
Function invoked when calling the pipeline for generation.
|
863 |
+
|
864 |
+
Args:
|
865 |
+
prompt (`str` or `List[str]`, *optional*):
|
866 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
867 |
+
instead.
|
868 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
869 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
870 |
+
used in both text-encoders
|
871 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
872 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
873 |
+
Anything below 512 pixels won't work well for
|
874 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
875 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
876 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
877 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
878 |
+
Anything below 512 pixels won't work well for
|
879 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
880 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
881 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
882 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
883 |
+
expense of slower inference.
|
884 |
+
denoising_end (`float`, *optional*):
|
885 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
886 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
887 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
888 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
889 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
890 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
891 |
+
denoising_start (`float`, *optional*):
|
892 |
+
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
893 |
+
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
894 |
+
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
895 |
+
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
896 |
+
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image
|
897 |
+
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
|
898 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
899 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
900 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
901 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
902 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
903 |
+
usually at the expense of lower image quality.
|
904 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
905 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
906 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
907 |
+
less than `1`).
|
908 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
909 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
910 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
911 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
912 |
+
The number of images to generate per prompt.
|
913 |
+
eta (`float`, *optional*, defaults to 0.0):
|
914 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
915 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
916 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
917 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
918 |
+
to make generation deterministic.
|
919 |
+
latents (`torch.FloatTensor`, *optional*):
|
920 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
921 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
922 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
923 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
924 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
925 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
926 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
927 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
928 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
929 |
+
argument.
|
930 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
931 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
932 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
933 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
934 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
935 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
936 |
+
input argument.
|
937 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
938 |
+
The output format of the generate image. Choose between
|
939 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
940 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
941 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
942 |
+
of a plain tuple.
|
943 |
+
callback (`Callable`, *optional*):
|
944 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
945 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
946 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
947 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
948 |
+
called at every step.
|
949 |
+
cross_attention_kwargs (`dict`, *optional*):
|
950 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
951 |
+
`self.processor` in
|
952 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
953 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
954 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
955 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
956 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
957 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
958 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
959 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
960 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
961 |
+
explained in section 2.2 of
|
962 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
963 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
964 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
965 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
966 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
967 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
968 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
969 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
970 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
971 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
972 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
973 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
974 |
+
micro-conditioning as explained in section 2.2 of
|
975 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
976 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
977 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
978 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
979 |
+
micro-conditioning as explained in section 2.2 of
|
980 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
981 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
982 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
983 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
984 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
985 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
986 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
987 |
+
|
988 |
+
Examples:
|
989 |
+
|
990 |
+
Returns:
|
991 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
992 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
993 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
994 |
+
"""
|
995 |
+
# 0. Default height and width to unet
|
996 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
997 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
998 |
+
|
999 |
+
original_size = original_size or (height, width)
|
1000 |
+
target_size = target_size or (height, width)
|
1001 |
+
|
1002 |
+
# 1. Check inputs. Raise error if not correct
|
1003 |
+
self.check_inputs(
|
1004 |
+
prompt,
|
1005 |
+
prompt_2,
|
1006 |
+
height,
|
1007 |
+
width,
|
1008 |
+
callback_steps,
|
1009 |
+
negative_prompt,
|
1010 |
+
negative_prompt_2,
|
1011 |
+
prompt_embeds,
|
1012 |
+
negative_prompt_embeds,
|
1013 |
+
pooled_prompt_embeds,
|
1014 |
+
negative_pooled_prompt_embeds,
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
# 2. Define call parameters
|
1018 |
+
if prompt is not None and isinstance(prompt, str):
|
1019 |
+
batch_size = 1
|
1020 |
+
elif prompt is not None and isinstance(prompt, list):
|
1021 |
+
batch_size = len(prompt)
|
1022 |
+
else:
|
1023 |
+
batch_size = prompt_embeds.shape[0]
|
1024 |
+
|
1025 |
+
device = self._execution_device
|
1026 |
+
|
1027 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1028 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1029 |
+
# corresponds to doing no classifier free guidance.
|
1030 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
1031 |
+
|
1032 |
+
# 3. Encode input prompt
|
1033 |
+
lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1034 |
+
|
1035 |
+
(
|
1036 |
+
prompt_embeds,
|
1037 |
+
negative_prompt_embeds,
|
1038 |
+
pooled_prompt_embeds,
|
1039 |
+
negative_pooled_prompt_embeds,
|
1040 |
+
) = self.encode_prompt(
|
1041 |
+
prompt=prompt,
|
1042 |
+
prompt_2=prompt_2,
|
1043 |
+
device=device,
|
1044 |
+
num_images_per_prompt=num_images_per_prompt,
|
1045 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
1046 |
+
negative_prompt=negative_prompt,
|
1047 |
+
negative_prompt_2=negative_prompt_2,
|
1048 |
+
prompt_embeds=prompt_embeds,
|
1049 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1050 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1051 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1052 |
+
lora_scale=lora_scale,
|
1053 |
+
clip_skip=clip_skip,
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
# 4. Prepare timesteps
|
1057 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1058 |
+
|
1059 |
+
timesteps = self.scheduler.timesteps
|
1060 |
+
|
1061 |
+
# 5. Prepare latent variables
|
1062 |
+
num_channels_latents = self.unet.config.in_channels
|
1063 |
+
latents = self.prepare_latents(
|
1064 |
+
batch_size * num_images_per_prompt,
|
1065 |
+
num_channels_latents,
|
1066 |
+
height,
|
1067 |
+
width,
|
1068 |
+
prompt_embeds.dtype,
|
1069 |
+
device,
|
1070 |
+
generator,
|
1071 |
+
latents,
|
1072 |
+
)
|
1073 |
+
|
1074 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1075 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1076 |
+
|
1077 |
+
# 7. Prepare added time ids & embeddings
|
1078 |
+
add_text_embeds = pooled_prompt_embeds
|
1079 |
+
if self.text_encoder_2 is None:
|
1080 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1081 |
+
else:
|
1082 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1083 |
+
|
1084 |
+
add_time_ids = self._get_add_time_ids(
|
1085 |
+
original_size,
|
1086 |
+
crops_coords_top_left,
|
1087 |
+
target_size,
|
1088 |
+
dtype=prompt_embeds.dtype,
|
1089 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1090 |
+
)
|
1091 |
+
if negative_original_size is not None and negative_target_size is not None:
|
1092 |
+
negative_add_time_ids = self._get_add_time_ids(
|
1093 |
+
negative_original_size,
|
1094 |
+
negative_crops_coords_top_left,
|
1095 |
+
negative_target_size,
|
1096 |
+
dtype=prompt_embeds.dtype,
|
1097 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1098 |
+
)
|
1099 |
+
else:
|
1100 |
+
negative_add_time_ids = add_time_ids
|
1101 |
+
|
1102 |
+
if do_classifier_free_guidance:
|
1103 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1104 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1105 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
1106 |
+
|
1107 |
+
prompt_embeds = prompt_embeds.to(device)
|
1108 |
+
add_text_embeds = add_text_embeds.to(device)
|
1109 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1110 |
+
|
1111 |
+
# 8. Denoising loop
|
1112 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1113 |
+
|
1114 |
+
# 8.1 Apply denoising_end
|
1115 |
+
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
|
1116 |
+
discrete_timestep_cutoff = int(
|
1117 |
+
round(
|
1118 |
+
self.scheduler.config.num_train_timesteps
|
1119 |
+
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
1120 |
+
)
|
1121 |
+
)
|
1122 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1123 |
+
timesteps = timesteps[:num_inference_steps]
|
1124 |
+
|
1125 |
+
# 8.2 Determine denoising_start
|
1126 |
+
denoising_start_index = 0
|
1127 |
+
if denoising_start is not None and isinstance(denoising_start, float) and denoising_start > 0 and denoising_start < 1:
|
1128 |
+
discrete_timestep_start = int(
|
1129 |
+
round(
|
1130 |
+
self.scheduler.config.num_train_timesteps
|
1131 |
+
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
1132 |
+
)
|
1133 |
+
)
|
1134 |
+
denoising_start_index = len(list(filter(lambda ts: ts < discrete_timestep_start, timesteps)))
|
1135 |
+
|
1136 |
+
|
1137 |
+
with self.progress_bar(total=num_inference_steps - denoising_start_index) as progress_bar:
|
1138 |
+
for i, t in enumerate(timesteps, start=denoising_start_index):
|
1139 |
+
# expand the latents if we are doing classifier free guidance
|
1140 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1141 |
+
|
1142 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1143 |
+
|
1144 |
+
# predict the noise residual
|
1145 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1146 |
+
noise_pred = self.unet(
|
1147 |
+
latent_model_input,
|
1148 |
+
t,
|
1149 |
+
encoder_hidden_states=prompt_embeds,
|
1150 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1151 |
+
added_cond_kwargs=added_cond_kwargs,
|
1152 |
+
return_dict=False,
|
1153 |
+
)[0]
|
1154 |
+
|
1155 |
+
# perform guidance
|
1156 |
+
if do_classifier_free_guidance:
|
1157 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1158 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1159 |
+
|
1160 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1161 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1162 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1163 |
+
|
1164 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1165 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1166 |
+
|
1167 |
+
# call the callback, if provided
|
1168 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1169 |
+
progress_bar.update()
|
1170 |
+
if callback is not None and i % callback_steps == 0:
|
1171 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1172 |
+
callback(step_idx, t, latents)
|
1173 |
+
|
1174 |
+
if XLA_AVAILABLE:
|
1175 |
+
xm.mark_step()
|
1176 |
+
|
1177 |
+
if not output_type == "latent":
|
1178 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1179 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1180 |
+
|
1181 |
+
if needs_upcasting:
|
1182 |
+
self.upcast_vae()
|
1183 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1184 |
+
|
1185 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1186 |
+
|
1187 |
+
# cast back to fp16 if needed
|
1188 |
+
if needs_upcasting:
|
1189 |
+
self.vae.to(dtype=torch.float16)
|
1190 |
+
else:
|
1191 |
+
image = latents
|
1192 |
+
|
1193 |
+
if not output_type == "latent":
|
1194 |
+
# apply watermark if available
|
1195 |
+
if self.watermark is not None:
|
1196 |
+
image = self.watermark.apply_watermark(image)
|
1197 |
+
|
1198 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1199 |
+
|
1200 |
+
# Offload all models
|
1201 |
+
self.maybe_free_model_hooks()
|
1202 |
+
|
1203 |
+
if not return_dict:
|
1204 |
+
return (image,)
|
1205 |
+
|
1206 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
1207 |
+
|
1208 |
+
|
1209 |
+
|
1210 |
+
|
1211 |
+
# TODO this is rough. Need to properly stack unconditional
|
1212 |
+
class FluxWithCFGPipeline(FluxPipeline):
|
1213 |
+
def __call__(
|
1214 |
+
self,
|
1215 |
+
prompt: Union[str, List[str]] = None,
|
1216 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
1217 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1218 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
1219 |
+
height: Optional[int] = None,
|
1220 |
+
width: Optional[int] = None,
|
1221 |
+
num_inference_steps: int = 28,
|
1222 |
+
timesteps: List[int] = None,
|
1223 |
+
guidance_scale: float = 7.0,
|
1224 |
+
num_images_per_prompt: Optional[int] = 1,
|
1225 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1226 |
+
latents: Optional[torch.FloatTensor] = None,
|
1227 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1228 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1229 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1230 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1231 |
+
output_type: Optional[str] = "pil",
|
1232 |
+
return_dict: bool = True,
|
1233 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1234 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
1235 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1236 |
+
max_sequence_length: int = 512,
|
1237 |
+
):
|
1238 |
+
|
1239 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
1240 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
1241 |
+
|
1242 |
+
# 1. Check inputs. Raise error if not correct
|
1243 |
+
self.check_inputs(
|
1244 |
+
prompt,
|
1245 |
+
prompt_2,
|
1246 |
+
height,
|
1247 |
+
width,
|
1248 |
+
prompt_embeds=prompt_embeds,
|
1249 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1250 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
1251 |
+
max_sequence_length=max_sequence_length,
|
1252 |
+
)
|
1253 |
+
|
1254 |
+
self._guidance_scale = guidance_scale
|
1255 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
1256 |
+
self._interrupt = False
|
1257 |
+
|
1258 |
+
# 2. Define call parameters
|
1259 |
+
if prompt is not None and isinstance(prompt, str):
|
1260 |
+
batch_size = 1
|
1261 |
+
elif prompt is not None and isinstance(prompt, list):
|
1262 |
+
batch_size = len(prompt)
|
1263 |
+
else:
|
1264 |
+
batch_size = prompt_embeds.shape[0]
|
1265 |
+
|
1266 |
+
device = self._execution_device
|
1267 |
+
|
1268 |
+
lora_scale = (
|
1269 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
1270 |
+
)
|
1271 |
+
(
|
1272 |
+
prompt_embeds,
|
1273 |
+
pooled_prompt_embeds,
|
1274 |
+
text_ids,
|
1275 |
+
) = self.encode_prompt(
|
1276 |
+
prompt=prompt,
|
1277 |
+
prompt_2=prompt_2,
|
1278 |
+
prompt_embeds=prompt_embeds,
|
1279 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1280 |
+
device=device,
|
1281 |
+
num_images_per_prompt=num_images_per_prompt,
|
1282 |
+
max_sequence_length=max_sequence_length,
|
1283 |
+
lora_scale=lora_scale,
|
1284 |
+
)
|
1285 |
+
(
|
1286 |
+
negative_prompt_embeds,
|
1287 |
+
negative_pooled_prompt_embeds,
|
1288 |
+
negative_text_ids,
|
1289 |
+
) = self.encode_prompt(
|
1290 |
+
prompt=negative_prompt,
|
1291 |
+
prompt_2=negative_prompt_2,
|
1292 |
+
prompt_embeds=negative_prompt_embeds,
|
1293 |
+
pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1294 |
+
device=device,
|
1295 |
+
num_images_per_prompt=num_images_per_prompt,
|
1296 |
+
max_sequence_length=max_sequence_length,
|
1297 |
+
lora_scale=lora_scale,
|
1298 |
+
)
|
1299 |
+
|
1300 |
+
# 4. Prepare latent variables
|
1301 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
1302 |
+
latents, latent_image_ids = self.prepare_latents(
|
1303 |
+
batch_size * num_images_per_prompt,
|
1304 |
+
num_channels_latents,
|
1305 |
+
height,
|
1306 |
+
width,
|
1307 |
+
prompt_embeds.dtype,
|
1308 |
+
device,
|
1309 |
+
generator,
|
1310 |
+
latents,
|
1311 |
+
)
|
1312 |
+
|
1313 |
+
# 5. Prepare timesteps
|
1314 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
1315 |
+
image_seq_len = latents.shape[1]
|
1316 |
+
mu = calculate_shift(
|
1317 |
+
image_seq_len,
|
1318 |
+
self.scheduler.config.base_image_seq_len,
|
1319 |
+
self.scheduler.config.max_image_seq_len,
|
1320 |
+
self.scheduler.config.base_shift,
|
1321 |
+
self.scheduler.config.max_shift,
|
1322 |
+
)
|
1323 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1324 |
+
self.scheduler,
|
1325 |
+
num_inference_steps,
|
1326 |
+
device,
|
1327 |
+
timesteps,
|
1328 |
+
sigmas,
|
1329 |
+
mu=mu,
|
1330 |
+
)
|
1331 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1332 |
+
self._num_timesteps = len(timesteps)
|
1333 |
+
|
1334 |
+
# 6. Denoising loop
|
1335 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1336 |
+
for i, t in enumerate(timesteps):
|
1337 |
+
if self.interrupt:
|
1338 |
+
continue
|
1339 |
+
|
1340 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1341 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
1342 |
+
|
1343 |
+
# handle guidance
|
1344 |
+
if self.transformer.config.guidance_embeds:
|
1345 |
+
guidance = torch.tensor([guidance_scale], device=device)
|
1346 |
+
guidance = guidance.expand(latents.shape[0])
|
1347 |
+
else:
|
1348 |
+
guidance = None
|
1349 |
+
|
1350 |
+
noise_pred_text = self.transformer(
|
1351 |
+
hidden_states=latents,
|
1352 |
+
timestep=timestep / 1000,
|
1353 |
+
guidance=guidance,
|
1354 |
+
pooled_projections=pooled_prompt_embeds,
|
1355 |
+
encoder_hidden_states=prompt_embeds,
|
1356 |
+
txt_ids=text_ids,
|
1357 |
+
img_ids=latent_image_ids,
|
1358 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
1359 |
+
return_dict=False,
|
1360 |
+
)[0]
|
1361 |
+
|
1362 |
+
# todo combine these
|
1363 |
+
noise_pred_uncond = self.transformer(
|
1364 |
+
hidden_states=latents,
|
1365 |
+
timestep=timestep / 1000,
|
1366 |
+
guidance=guidance,
|
1367 |
+
pooled_projections=negative_pooled_prompt_embeds,
|
1368 |
+
encoder_hidden_states=negative_prompt_embeds,
|
1369 |
+
txt_ids=negative_text_ids,
|
1370 |
+
img_ids=latent_image_ids,
|
1371 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
1372 |
+
return_dict=False,
|
1373 |
+
)[0]
|
1374 |
+
|
1375 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1376 |
+
|
1377 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1378 |
+
latents_dtype = latents.dtype
|
1379 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
1380 |
+
|
1381 |
+
if latents.dtype != latents_dtype:
|
1382 |
+
if torch.backends.mps.is_available():
|
1383 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1384 |
+
latents = latents.to(latents_dtype)
|
1385 |
+
|
1386 |
+
if callback_on_step_end is not None:
|
1387 |
+
callback_kwargs = {}
|
1388 |
+
for k in callback_on_step_end_tensor_inputs:
|
1389 |
+
callback_kwargs[k] = locals()[k]
|
1390 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1391 |
+
|
1392 |
+
latents = callback_outputs.pop("latents", latents)
|
1393 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1394 |
+
|
1395 |
+
# call the callback, if provided
|
1396 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1397 |
+
progress_bar.update()
|
1398 |
+
|
1399 |
+
if XLA_AVAILABLE:
|
1400 |
+
xm.mark_step()
|
1401 |
+
|
1402 |
+
if output_type == "latent":
|
1403 |
+
image = latents
|
1404 |
+
|
1405 |
+
else:
|
1406 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
1407 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
1408 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1409 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1410 |
+
|
1411 |
+
# Offload all models
|
1412 |
+
self.maybe_free_model_hooks()
|
1413 |
+
|
1414 |
+
if not return_dict:
|
1415 |
+
return (image,)
|
1416 |
+
|
1417 |
+
return FluxPipelineOutput(images=image)
|