Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
1d20a91
1
Parent(s):
3880b98
delete
Browse files- app.py +35 -30
- pipelines.py +1417 -0
app.py
CHANGED
|
@@ -3,37 +3,41 @@ import numpy as np
|
|
| 3 |
import random
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
-
from diffusers import
|
| 7 |
-
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
| 8 |
-
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
| 9 |
from huggingface_hub import hf_hub_download
|
| 10 |
from optimum.quanto import freeze, qfloat8, quantize
|
|
|
|
| 11 |
import os
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 14 |
dtype = torch.bfloat16
|
| 15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
|
|
|
|
| 17 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 18 |
-
good_vae = AutoencoderKL.from_pretrained(
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
|
| 25 |
-
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
vae=taef1,
|
| 32 |
token=huggingface_token
|
| 33 |
-
)
|
| 34 |
|
| 35 |
# Load and fuse LoRA BEFORE quantizing
|
| 36 |
-
print('Loading and fusing
|
| 37 |
lora_path = hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors")
|
| 38 |
pipe.load_lora_weights(lora_path)
|
| 39 |
pipe.fuse_lora(lora_scale=0.125)
|
|
@@ -43,12 +47,14 @@ pipe.unload_lora_weights()
|
|
| 43 |
print("Quantizing transformer")
|
| 44 |
quantize(pipe.transformer, weights=qfloat8)
|
| 45 |
freeze(pipe.transformer)
|
| 46 |
-
pipe.transformer.to(device)
|
| 47 |
|
| 48 |
-
# Quantize T5 encoder
|
| 49 |
-
print("Quantizing T5")
|
| 50 |
quantize(pipe.text_encoder_2, weights=qfloat8)
|
| 51 |
freeze(pipe.text_encoder_2)
|
|
|
|
|
|
|
|
|
|
| 52 |
pipe.text_encoder_2.to(device)
|
| 53 |
|
| 54 |
# Move other components to device
|
|
@@ -72,14 +78,14 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
|
|
| 72 |
good_vae=good_vae,
|
| 73 |
):
|
| 74 |
yield img, seed
|
| 75 |
-
|
| 76 |
examples = [
|
| 77 |
"wbgmsst, a cat, white background",
|
| 78 |
"wbgmsst, a warrior, white background",
|
| 79 |
"wbgmsst, an anime girl, white background",
|
| 80 |
]
|
| 81 |
|
| 82 |
-
css="""
|
| 83 |
#col-container {
|
| 84 |
margin: 0 auto;
|
| 85 |
max-width: 520px;
|
|
@@ -139,7 +145,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 139 |
)
|
| 140 |
|
| 141 |
with gr.Row():
|
| 142 |
-
|
| 143 |
guidance_scale = gr.Slider(
|
| 144 |
label="Guidance Scale",
|
| 145 |
minimum=1,
|
|
@@ -157,18 +162,18 @@ with gr.Blocks(css=css) as demo:
|
|
| 157 |
)
|
| 158 |
|
| 159 |
gr.Examples(
|
| 160 |
-
examples
|
| 161 |
-
fn
|
| 162 |
-
inputs
|
| 163 |
-
outputs
|
| 164 |
cache_examples="lazy"
|
| 165 |
)
|
| 166 |
|
| 167 |
gr.on(
|
| 168 |
triggers=[run_button.click, prompt.submit],
|
| 169 |
-
fn
|
| 170 |
-
inputs
|
| 171 |
-
outputs
|
| 172 |
)
|
| 173 |
|
| 174 |
demo.launch()
|
|
|
|
| 3 |
import random
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
| 7 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
|
|
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
from optimum.quanto import freeze, qfloat8, quantize
|
| 10 |
+
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
|
| 11 |
import os
|
| 12 |
|
| 13 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 14 |
+
MAX_IMAGE_SIZE = 2048
|
| 15 |
+
# Set up environment variables and device
|
| 16 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 17 |
dtype = torch.bfloat16
|
| 18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
|
| 20 |
+
# Load VAE models
|
| 21 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 22 |
+
good_vae = AutoencoderKL.from_pretrained(
|
| 23 |
+
"black-forest-labs/FLUX.1-dev",
|
| 24 |
+
subfolder="vae",
|
| 25 |
+
torch_dtype=dtype,
|
| 26 |
+
token=huggingface_token
|
| 27 |
+
).to(device)
|
| 28 |
|
| 29 |
+
# Initialize FluxPipeline instead of DiffusionPipeline
|
| 30 |
+
from pipelines import FluxPipeline
|
| 31 |
|
| 32 |
+
pipe = FluxPipeline.from_pretrained(
|
| 33 |
+
"black-forest-labs/FLUX.1-dev",
|
| 34 |
+
torch_dtype=torch.float32, # Load in full precision initially
|
| 35 |
+
vae=taef1,
|
|
|
|
| 36 |
token=huggingface_token
|
| 37 |
+
).to(device)
|
| 38 |
|
| 39 |
# Load and fuse LoRA BEFORE quantizing
|
| 40 |
+
print('Loading and fusing LoRA, please wait...')
|
| 41 |
lora_path = hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors")
|
| 42 |
pipe.load_lora_weights(lora_path)
|
| 43 |
pipe.fuse_lora(lora_scale=0.125)
|
|
|
|
| 47 |
print("Quantizing transformer")
|
| 48 |
quantize(pipe.transformer, weights=qfloat8)
|
| 49 |
freeze(pipe.transformer)
|
|
|
|
| 50 |
|
| 51 |
+
# Quantize the T5 text encoder
|
| 52 |
+
print("Quantizing T5 text encoder")
|
| 53 |
quantize(pipe.text_encoder_2, weights=qfloat8)
|
| 54 |
freeze(pipe.text_encoder_2)
|
| 55 |
+
|
| 56 |
+
# Move quantized components to device (if not already)
|
| 57 |
+
pipe.transformer.to(device)
|
| 58 |
pipe.text_encoder_2.to(device)
|
| 59 |
|
| 60 |
# Move other components to device
|
|
|
|
| 78 |
good_vae=good_vae,
|
| 79 |
):
|
| 80 |
yield img, seed
|
| 81 |
+
|
| 82 |
examples = [
|
| 83 |
"wbgmsst, a cat, white background",
|
| 84 |
"wbgmsst, a warrior, white background",
|
| 85 |
"wbgmsst, an anime girl, white background",
|
| 86 |
]
|
| 87 |
|
| 88 |
+
css = """
|
| 89 |
#col-container {
|
| 90 |
margin: 0 auto;
|
| 91 |
max-width: 520px;
|
|
|
|
| 145 |
)
|
| 146 |
|
| 147 |
with gr.Row():
|
|
|
|
| 148 |
guidance_scale = gr.Slider(
|
| 149 |
label="Guidance Scale",
|
| 150 |
minimum=1,
|
|
|
|
| 162 |
)
|
| 163 |
|
| 164 |
gr.Examples(
|
| 165 |
+
examples=examples,
|
| 166 |
+
fn=infer,
|
| 167 |
+
inputs=[prompt],
|
| 168 |
+
outputs=[result, seed],
|
| 169 |
cache_examples="lazy"
|
| 170 |
)
|
| 171 |
|
| 172 |
gr.on(
|
| 173 |
triggers=[run_button.click, prompt.submit],
|
| 174 |
+
fn=infer,
|
| 175 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 176 |
+
outputs=[result, seed]
|
| 177 |
)
|
| 178 |
|
| 179 |
demo.launch()
|
pipelines.py
ADDED
|
@@ -0,0 +1,1417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import importlib
|
| 2 |
+
import inspect
|
| 3 |
+
from typing import Union, List, Optional, Dict, Any, Tuple, Callable
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline, LMSDiscreteScheduler, FluxPipeline
|
| 8 |
+
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
|
| 9 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
| 10 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
| 11 |
+
# from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_k_diffusion import ModelWrapper
|
| 12 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
| 13 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg
|
| 14 |
+
from diffusers.utils import is_torch_xla_available
|
| 15 |
+
from k_diffusion.external import CompVisVDenoiser, CompVisDenoiser
|
| 16 |
+
from k_diffusion.sampling import get_sigmas_karras, BrownianTreeNoiseSampler
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
if is_torch_xla_available():
|
| 20 |
+
import torch_xla.core.xla_model as xm
|
| 21 |
+
|
| 22 |
+
XLA_AVAILABLE = True
|
| 23 |
+
else:
|
| 24 |
+
XLA_AVAILABLE = False
|
| 25 |
+
|
| 26 |
+
class StableDiffusionKDiffusionXLPipeline(StableDiffusionXLPipeline):
|
| 27 |
+
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
vae: 'AutoencoderKL',
|
| 31 |
+
text_encoder: 'CLIPTextModel',
|
| 32 |
+
text_encoder_2: 'CLIPTextModelWithProjection',
|
| 33 |
+
tokenizer: 'CLIPTokenizer',
|
| 34 |
+
tokenizer_2: 'CLIPTokenizer',
|
| 35 |
+
unet: 'UNet2DConditionModel',
|
| 36 |
+
scheduler: 'KarrasDiffusionSchedulers',
|
| 37 |
+
force_zeros_for_empty_prompt: bool = True,
|
| 38 |
+
add_watermarker: Optional[bool] = None,
|
| 39 |
+
):
|
| 40 |
+
super().__init__(
|
| 41 |
+
vae=vae,
|
| 42 |
+
text_encoder=text_encoder,
|
| 43 |
+
text_encoder_2=text_encoder_2,
|
| 44 |
+
tokenizer=tokenizer,
|
| 45 |
+
tokenizer_2=tokenizer_2,
|
| 46 |
+
unet=unet,
|
| 47 |
+
scheduler=scheduler,
|
| 48 |
+
)
|
| 49 |
+
raise NotImplementedError("This pipeline is not implemented yet")
|
| 50 |
+
# self.sampler = None
|
| 51 |
+
# scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
|
| 52 |
+
# model = ModelWrapper(unet, scheduler.alphas_cumprod)
|
| 53 |
+
# if scheduler.config.prediction_type == "v_prediction":
|
| 54 |
+
# self.k_diffusion_model = CompVisVDenoiser(model)
|
| 55 |
+
# else:
|
| 56 |
+
# self.k_diffusion_model = CompVisDenoiser(model)
|
| 57 |
+
|
| 58 |
+
def set_scheduler(self, scheduler_type: str):
|
| 59 |
+
library = importlib.import_module("k_diffusion")
|
| 60 |
+
sampling = getattr(library, "sampling")
|
| 61 |
+
self.sampler = getattr(sampling, scheduler_type)
|
| 62 |
+
|
| 63 |
+
@torch.no_grad()
|
| 64 |
+
def __call__(
|
| 65 |
+
self,
|
| 66 |
+
prompt: Union[str, List[str]] = None,
|
| 67 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 68 |
+
height: Optional[int] = None,
|
| 69 |
+
width: Optional[int] = None,
|
| 70 |
+
num_inference_steps: int = 50,
|
| 71 |
+
denoising_end: Optional[float] = None,
|
| 72 |
+
guidance_scale: float = 5.0,
|
| 73 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 74 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 75 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 76 |
+
eta: float = 0.0,
|
| 77 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 78 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 79 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 80 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 81 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 82 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 83 |
+
output_type: Optional[str] = "pil",
|
| 84 |
+
return_dict: bool = True,
|
| 85 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 86 |
+
callback_steps: int = 1,
|
| 87 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 88 |
+
guidance_rescale: float = 0.0,
|
| 89 |
+
original_size: Optional[Tuple[int, int]] = None,
|
| 90 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 91 |
+
target_size: Optional[Tuple[int, int]] = None,
|
| 92 |
+
use_karras_sigmas: bool = False,
|
| 93 |
+
):
|
| 94 |
+
|
| 95 |
+
# 0. Default height and width to unet
|
| 96 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 97 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 98 |
+
|
| 99 |
+
original_size = original_size or (height, width)
|
| 100 |
+
target_size = target_size or (height, width)
|
| 101 |
+
|
| 102 |
+
# 1. Check inputs. Raise error if not correct
|
| 103 |
+
self.check_inputs(
|
| 104 |
+
prompt,
|
| 105 |
+
prompt_2,
|
| 106 |
+
height,
|
| 107 |
+
width,
|
| 108 |
+
callback_steps,
|
| 109 |
+
negative_prompt,
|
| 110 |
+
negative_prompt_2,
|
| 111 |
+
prompt_embeds,
|
| 112 |
+
negative_prompt_embeds,
|
| 113 |
+
pooled_prompt_embeds,
|
| 114 |
+
negative_pooled_prompt_embeds,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# 2. Define call parameters
|
| 118 |
+
if prompt is not None and isinstance(prompt, str):
|
| 119 |
+
batch_size = 1
|
| 120 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 121 |
+
batch_size = len(prompt)
|
| 122 |
+
else:
|
| 123 |
+
batch_size = prompt_embeds.shape[0]
|
| 124 |
+
|
| 125 |
+
device = self._execution_device
|
| 126 |
+
|
| 127 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 128 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 129 |
+
# corresponds to doing no classifier free guidance.
|
| 130 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 131 |
+
|
| 132 |
+
# 3. Encode input prompt
|
| 133 |
+
text_encoder_lora_scale = (
|
| 134 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
| 135 |
+
)
|
| 136 |
+
(
|
| 137 |
+
prompt_embeds,
|
| 138 |
+
negative_prompt_embeds,
|
| 139 |
+
pooled_prompt_embeds,
|
| 140 |
+
negative_pooled_prompt_embeds,
|
| 141 |
+
) = self.encode_prompt(
|
| 142 |
+
prompt=prompt,
|
| 143 |
+
prompt_2=prompt_2,
|
| 144 |
+
device=device,
|
| 145 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 146 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 147 |
+
negative_prompt=negative_prompt,
|
| 148 |
+
negative_prompt_2=negative_prompt_2,
|
| 149 |
+
prompt_embeds=prompt_embeds,
|
| 150 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 151 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 152 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 153 |
+
lora_scale=text_encoder_lora_scale,
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
# 4. Prepare timesteps
|
| 157 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 158 |
+
|
| 159 |
+
timesteps = self.scheduler.timesteps
|
| 160 |
+
|
| 161 |
+
# 5. Prepare latent variables
|
| 162 |
+
num_channels_latents = self.unet.config.in_channels
|
| 163 |
+
latents = self.prepare_latents(
|
| 164 |
+
batch_size * num_images_per_prompt,
|
| 165 |
+
num_channels_latents,
|
| 166 |
+
height,
|
| 167 |
+
width,
|
| 168 |
+
prompt_embeds.dtype,
|
| 169 |
+
device,
|
| 170 |
+
generator,
|
| 171 |
+
latents,
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 175 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 176 |
+
|
| 177 |
+
# 7. Prepare added time ids & embeddings
|
| 178 |
+
add_text_embeds = pooled_prompt_embeds
|
| 179 |
+
add_time_ids = self._get_add_time_ids(
|
| 180 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
if do_classifier_free_guidance:
|
| 184 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 185 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
| 186 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
| 187 |
+
|
| 188 |
+
prompt_embeds = prompt_embeds.to(device)
|
| 189 |
+
add_text_embeds = add_text_embeds.to(device)
|
| 190 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
| 191 |
+
|
| 192 |
+
# 8. Denoising loop
|
| 193 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 194 |
+
|
| 195 |
+
# 7.1 Apply denoising_end
|
| 196 |
+
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
|
| 197 |
+
discrete_timestep_cutoff = int(
|
| 198 |
+
round(
|
| 199 |
+
self.scheduler.config.num_train_timesteps
|
| 200 |
+
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
| 201 |
+
)
|
| 202 |
+
)
|
| 203 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
| 204 |
+
timesteps = timesteps[:num_inference_steps]
|
| 205 |
+
|
| 206 |
+
# 5. Prepare sigmas
|
| 207 |
+
if use_karras_sigmas:
|
| 208 |
+
sigma_min: float = self.k_diffusion_model.sigmas[0].item()
|
| 209 |
+
sigma_max: float = self.k_diffusion_model.sigmas[-1].item()
|
| 210 |
+
sigmas = get_sigmas_karras(n=num_inference_steps, sigma_min=sigma_min, sigma_max=sigma_max)
|
| 211 |
+
sigmas = sigmas.to(device)
|
| 212 |
+
else:
|
| 213 |
+
sigmas = self.scheduler.sigmas
|
| 214 |
+
sigmas = sigmas.to(prompt_embeds.dtype)
|
| 215 |
+
|
| 216 |
+
# 5. Prepare latent variables
|
| 217 |
+
num_channels_latents = self.unet.config.in_channels
|
| 218 |
+
latents = self.prepare_latents(
|
| 219 |
+
batch_size * num_images_per_prompt,
|
| 220 |
+
num_channels_latents,
|
| 221 |
+
height,
|
| 222 |
+
width,
|
| 223 |
+
prompt_embeds.dtype,
|
| 224 |
+
device,
|
| 225 |
+
generator,
|
| 226 |
+
latents,
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
latents = latents * sigmas[0]
|
| 230 |
+
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
|
| 231 |
+
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(latents.device)
|
| 232 |
+
|
| 233 |
+
# 7. Define model function
|
| 234 |
+
def model_fn(x, t):
|
| 235 |
+
latent_model_input = torch.cat([x] * 2)
|
| 236 |
+
t = torch.cat([t] * 2)
|
| 237 |
+
|
| 238 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
| 239 |
+
# noise_pred = self.unet(
|
| 240 |
+
# latent_model_input,
|
| 241 |
+
# t,
|
| 242 |
+
# encoder_hidden_states=prompt_embeds,
|
| 243 |
+
# cross_attention_kwargs=cross_attention_kwargs,
|
| 244 |
+
# added_cond_kwargs=added_cond_kwargs,
|
| 245 |
+
# return_dict=False,
|
| 246 |
+
# )[0]
|
| 247 |
+
|
| 248 |
+
noise_pred = self.k_diffusion_model(
|
| 249 |
+
latent_model_input,
|
| 250 |
+
t,
|
| 251 |
+
encoder_hidden_states=prompt_embeds,
|
| 252 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 253 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 254 |
+
return_dict=False,)[0]
|
| 255 |
+
|
| 256 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 257 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 258 |
+
return noise_pred
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
# 8. Run k-diffusion solver
|
| 262 |
+
sampler_kwargs = {}
|
| 263 |
+
# should work without it
|
| 264 |
+
noise_sampler_seed = None
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
if "noise_sampler" in inspect.signature(self.sampler).parameters:
|
| 268 |
+
min_sigma, max_sigma = sigmas[sigmas > 0].min(), sigmas.max()
|
| 269 |
+
noise_sampler = BrownianTreeNoiseSampler(latents, min_sigma, max_sigma, noise_sampler_seed)
|
| 270 |
+
sampler_kwargs["noise_sampler"] = noise_sampler
|
| 271 |
+
|
| 272 |
+
latents = self.sampler(model_fn, latents, sigmas, **sampler_kwargs)
|
| 273 |
+
|
| 274 |
+
if not output_type == "latent":
|
| 275 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 276 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
| 277 |
+
else:
|
| 278 |
+
image = latents
|
| 279 |
+
has_nsfw_concept = None
|
| 280 |
+
|
| 281 |
+
if has_nsfw_concept is None:
|
| 282 |
+
do_denormalize = [True] * image.shape[0]
|
| 283 |
+
else:
|
| 284 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
| 285 |
+
|
| 286 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
| 287 |
+
|
| 288 |
+
# Offload last model to CPU
|
| 289 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 290 |
+
self.final_offload_hook.offload()
|
| 291 |
+
|
| 292 |
+
if not return_dict:
|
| 293 |
+
return (image,)
|
| 294 |
+
|
| 295 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
class CustomStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
| 299 |
+
|
| 300 |
+
def predict_noise(
|
| 301 |
+
self,
|
| 302 |
+
prompt: Union[str, List[str]] = None,
|
| 303 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 304 |
+
num_inference_steps: int = 50,
|
| 305 |
+
guidance_scale: float = 5.0,
|
| 306 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 307 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 308 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 309 |
+
eta: float = 0.0,
|
| 310 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 311 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 312 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 313 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 314 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 315 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 316 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 317 |
+
guidance_rescale: float = 0.0,
|
| 318 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 319 |
+
timestep: Optional[int] = None,
|
| 320 |
+
):
|
| 321 |
+
r"""
|
| 322 |
+
Function invoked when calling the pipeline for generation.
|
| 323 |
+
|
| 324 |
+
Args:
|
| 325 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 326 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 327 |
+
instead.
|
| 328 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 329 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 330 |
+
used in both text-encoders
|
| 331 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 332 |
+
The height in pixels of the generated image.
|
| 333 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 334 |
+
The width in pixels of the generated image.
|
| 335 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 336 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 337 |
+
expense of slower inference.
|
| 338 |
+
denoising_end (`float`, *optional*):
|
| 339 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
| 340 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
| 341 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
| 342 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
| 343 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
| 344 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
| 345 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 346 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 347 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 348 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 349 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 350 |
+
usually at the expense of lower image quality.
|
| 351 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 352 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 353 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 354 |
+
less than `1`).
|
| 355 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 356 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 357 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
| 358 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 359 |
+
The number of images to generate per prompt.
|
| 360 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 361 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 362 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 363 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 364 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 365 |
+
to make generation deterministic.
|
| 366 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 367 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 368 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 369 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 370 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 371 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 372 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 373 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 374 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 375 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 376 |
+
argument.
|
| 377 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 378 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 379 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 380 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 381 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 382 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 383 |
+
input argument.
|
| 384 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 385 |
+
The output format of the generate image. Choose between
|
| 386 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 387 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 388 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
| 389 |
+
of a plain tuple.
|
| 390 |
+
callback (`Callable`, *optional*):
|
| 391 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 392 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 393 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 394 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 395 |
+
called at every step.
|
| 396 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 397 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 398 |
+
`self.processor` in
|
| 399 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
| 400 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
| 401 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
| 402 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
| 403 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
| 404 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
| 405 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 406 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
| 407 |
+
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
| 408 |
+
explained in section 2.2 of
|
| 409 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 410 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
| 411 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
| 412 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
| 413 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
| 414 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 415 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 416 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
| 417 |
+
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
| 418 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 419 |
+
|
| 420 |
+
Examples:
|
| 421 |
+
|
| 422 |
+
Returns:
|
| 423 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
| 424 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
| 425 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
| 426 |
+
"""
|
| 427 |
+
# if not predict_noise:
|
| 428 |
+
# # call parent
|
| 429 |
+
# return super().__call__(
|
| 430 |
+
# prompt=prompt,
|
| 431 |
+
# prompt_2=prompt_2,
|
| 432 |
+
# height=height,
|
| 433 |
+
# width=width,
|
| 434 |
+
# num_inference_steps=num_inference_steps,
|
| 435 |
+
# denoising_end=denoising_end,
|
| 436 |
+
# guidance_scale=guidance_scale,
|
| 437 |
+
# negative_prompt=negative_prompt,
|
| 438 |
+
# negative_prompt_2=negative_prompt_2,
|
| 439 |
+
# num_images_per_prompt=num_images_per_prompt,
|
| 440 |
+
# eta=eta,
|
| 441 |
+
# generator=generator,
|
| 442 |
+
# latents=latents,
|
| 443 |
+
# prompt_embeds=prompt_embeds,
|
| 444 |
+
# negative_prompt_embeds=negative_prompt_embeds,
|
| 445 |
+
# pooled_prompt_embeds=pooled_prompt_embeds,
|
| 446 |
+
# negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 447 |
+
# output_type=output_type,
|
| 448 |
+
# return_dict=return_dict,
|
| 449 |
+
# callback=callback,
|
| 450 |
+
# callback_steps=callback_steps,
|
| 451 |
+
# cross_attention_kwargs=cross_attention_kwargs,
|
| 452 |
+
# guidance_rescale=guidance_rescale,
|
| 453 |
+
# original_size=original_size,
|
| 454 |
+
# crops_coords_top_left=crops_coords_top_left,
|
| 455 |
+
# target_size=target_size,
|
| 456 |
+
# )
|
| 457 |
+
|
| 458 |
+
# 0. Default height and width to unet
|
| 459 |
+
height = self.default_sample_size * self.vae_scale_factor
|
| 460 |
+
width = self.default_sample_size * self.vae_scale_factor
|
| 461 |
+
|
| 462 |
+
original_size = (height, width)
|
| 463 |
+
target_size = (height, width)
|
| 464 |
+
|
| 465 |
+
# 2. Define call parameters
|
| 466 |
+
if prompt is not None and isinstance(prompt, str):
|
| 467 |
+
batch_size = 1
|
| 468 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 469 |
+
batch_size = len(prompt)
|
| 470 |
+
else:
|
| 471 |
+
batch_size = prompt_embeds.shape[0]
|
| 472 |
+
|
| 473 |
+
device = self._execution_device
|
| 474 |
+
|
| 475 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 476 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 477 |
+
# corresponds to doing no classifier free guidance.
|
| 478 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 479 |
+
|
| 480 |
+
# 3. Encode input prompt
|
| 481 |
+
text_encoder_lora_scale = (
|
| 482 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
| 483 |
+
)
|
| 484 |
+
(
|
| 485 |
+
prompt_embeds,
|
| 486 |
+
negative_prompt_embeds,
|
| 487 |
+
pooled_prompt_embeds,
|
| 488 |
+
negative_pooled_prompt_embeds,
|
| 489 |
+
) = self.encode_prompt(
|
| 490 |
+
prompt=prompt,
|
| 491 |
+
prompt_2=prompt_2,
|
| 492 |
+
device=device,
|
| 493 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 494 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 495 |
+
negative_prompt=negative_prompt,
|
| 496 |
+
negative_prompt_2=negative_prompt_2,
|
| 497 |
+
prompt_embeds=prompt_embeds,
|
| 498 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 499 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 500 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 501 |
+
lora_scale=text_encoder_lora_scale,
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
# 4. Prepare timesteps
|
| 505 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 506 |
+
|
| 507 |
+
# 5. Prepare latent variables
|
| 508 |
+
num_channels_latents = self.unet.config.in_channels
|
| 509 |
+
latents = self.prepare_latents(
|
| 510 |
+
batch_size * num_images_per_prompt,
|
| 511 |
+
num_channels_latents,
|
| 512 |
+
height,
|
| 513 |
+
width,
|
| 514 |
+
prompt_embeds.dtype,
|
| 515 |
+
device,
|
| 516 |
+
generator,
|
| 517 |
+
latents,
|
| 518 |
+
)
|
| 519 |
+
|
| 520 |
+
# 7. Prepare added time ids & embeddings
|
| 521 |
+
add_text_embeds = pooled_prompt_embeds
|
| 522 |
+
add_time_ids = self._get_add_time_ids(
|
| 523 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
| 524 |
+
).to(device) # TODO DOES NOT CAST ORIGINALLY
|
| 525 |
+
|
| 526 |
+
if do_classifier_free_guidance:
|
| 527 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 528 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
| 529 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
| 530 |
+
|
| 531 |
+
prompt_embeds = prompt_embeds.to(device)
|
| 532 |
+
add_text_embeds = add_text_embeds.to(device)
|
| 533 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
| 534 |
+
|
| 535 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 536 |
+
|
| 537 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep)
|
| 538 |
+
|
| 539 |
+
# predict the noise residual
|
| 540 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
| 541 |
+
noise_pred = self.unet(
|
| 542 |
+
latent_model_input,
|
| 543 |
+
timestep,
|
| 544 |
+
encoder_hidden_states=prompt_embeds,
|
| 545 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 546 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 547 |
+
return_dict=False,
|
| 548 |
+
)[0]
|
| 549 |
+
|
| 550 |
+
# perform guidance
|
| 551 |
+
if do_classifier_free_guidance:
|
| 552 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 553 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 554 |
+
|
| 555 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
| 556 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
| 557 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
| 558 |
+
|
| 559 |
+
return noise_pred
|
| 560 |
+
|
| 561 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
| 562 |
+
print('Called cpu offload', gpu_id)
|
| 563 |
+
# fuck off
|
| 564 |
+
pass
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
class CustomStableDiffusionPipeline(StableDiffusionPipeline):
|
| 568 |
+
|
| 569 |
+
# replace the call so it matches SDXL call so we can use the same code and also stop early
|
| 570 |
+
def __call__(
|
| 571 |
+
self,
|
| 572 |
+
prompt: Union[str, List[str]] = None,
|
| 573 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 574 |
+
height: Optional[int] = None,
|
| 575 |
+
width: Optional[int] = None,
|
| 576 |
+
num_inference_steps: int = 50,
|
| 577 |
+
denoising_end: Optional[float] = None,
|
| 578 |
+
guidance_scale: float = 5.0,
|
| 579 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 580 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 581 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 582 |
+
eta: float = 0.0,
|
| 583 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 584 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 585 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 586 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 587 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 588 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 589 |
+
output_type: Optional[str] = "pil",
|
| 590 |
+
return_dict: bool = True,
|
| 591 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 592 |
+
callback_steps: int = 1,
|
| 593 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 594 |
+
guidance_rescale: float = 0.0,
|
| 595 |
+
original_size: Optional[Tuple[int, int]] = None,
|
| 596 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 597 |
+
target_size: Optional[Tuple[int, int]] = None,
|
| 598 |
+
):
|
| 599 |
+
# 0. Default height and width to unet
|
| 600 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 601 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 602 |
+
|
| 603 |
+
# 1. Check inputs. Raise error if not correct
|
| 604 |
+
self.check_inputs(
|
| 605 |
+
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
| 606 |
+
)
|
| 607 |
+
|
| 608 |
+
# 2. Define call parameters
|
| 609 |
+
if prompt is not None and isinstance(prompt, str):
|
| 610 |
+
batch_size = 1
|
| 611 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 612 |
+
batch_size = len(prompt)
|
| 613 |
+
else:
|
| 614 |
+
batch_size = prompt_embeds.shape[0]
|
| 615 |
+
|
| 616 |
+
device = self._execution_device
|
| 617 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 618 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 619 |
+
# corresponds to doing no classifier free guidance.
|
| 620 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 621 |
+
|
| 622 |
+
# 3. Encode input prompt
|
| 623 |
+
text_encoder_lora_scale = (
|
| 624 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
| 625 |
+
)
|
| 626 |
+
prompt_embeds = self._encode_prompt(
|
| 627 |
+
prompt,
|
| 628 |
+
device,
|
| 629 |
+
num_images_per_prompt,
|
| 630 |
+
do_classifier_free_guidance,
|
| 631 |
+
negative_prompt,
|
| 632 |
+
prompt_embeds=prompt_embeds,
|
| 633 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 634 |
+
lora_scale=text_encoder_lora_scale,
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
# 4. Prepare timesteps
|
| 638 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 639 |
+
timesteps = self.scheduler.timesteps
|
| 640 |
+
|
| 641 |
+
# 5. Prepare latent variables
|
| 642 |
+
num_channels_latents = self.unet.config.in_channels
|
| 643 |
+
latents = self.prepare_latents(
|
| 644 |
+
batch_size * num_images_per_prompt,
|
| 645 |
+
num_channels_latents,
|
| 646 |
+
height,
|
| 647 |
+
width,
|
| 648 |
+
prompt_embeds.dtype,
|
| 649 |
+
device,
|
| 650 |
+
generator,
|
| 651 |
+
latents,
|
| 652 |
+
)
|
| 653 |
+
|
| 654 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 655 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 656 |
+
|
| 657 |
+
# 7. Denoising loop
|
| 658 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 659 |
+
|
| 660 |
+
# 7.1 Apply denoising_end
|
| 661 |
+
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
|
| 662 |
+
discrete_timestep_cutoff = int(
|
| 663 |
+
round(
|
| 664 |
+
self.scheduler.config.num_train_timesteps
|
| 665 |
+
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
| 666 |
+
)
|
| 667 |
+
)
|
| 668 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
| 669 |
+
timesteps = timesteps[:num_inference_steps]
|
| 670 |
+
|
| 671 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 672 |
+
for i, t in enumerate(timesteps):
|
| 673 |
+
# expand the latents if we are doing classifier free guidance
|
| 674 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 675 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 676 |
+
|
| 677 |
+
# predict the noise residual
|
| 678 |
+
noise_pred = self.unet(
|
| 679 |
+
latent_model_input,
|
| 680 |
+
t,
|
| 681 |
+
encoder_hidden_states=prompt_embeds,
|
| 682 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 683 |
+
return_dict=False,
|
| 684 |
+
)[0]
|
| 685 |
+
|
| 686 |
+
# perform guidance
|
| 687 |
+
if do_classifier_free_guidance:
|
| 688 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 689 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 690 |
+
|
| 691 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
| 692 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
| 693 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
| 694 |
+
|
| 695 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 696 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
| 697 |
+
|
| 698 |
+
# call the callback, if provided
|
| 699 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 700 |
+
progress_bar.update()
|
| 701 |
+
if callback is not None and i % callback_steps == 0:
|
| 702 |
+
callback(i, t, latents)
|
| 703 |
+
|
| 704 |
+
if not output_type == "latent":
|
| 705 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 706 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
| 707 |
+
else:
|
| 708 |
+
image = latents
|
| 709 |
+
has_nsfw_concept = None
|
| 710 |
+
|
| 711 |
+
if has_nsfw_concept is None:
|
| 712 |
+
do_denormalize = [True] * image.shape[0]
|
| 713 |
+
else:
|
| 714 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
| 715 |
+
|
| 716 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
| 717 |
+
|
| 718 |
+
# Offload last model to CPU
|
| 719 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 720 |
+
self.final_offload_hook.offload()
|
| 721 |
+
|
| 722 |
+
if not return_dict:
|
| 723 |
+
return (image, has_nsfw_concept)
|
| 724 |
+
|
| 725 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
| 726 |
+
|
| 727 |
+
# some of the inputs are to keep it compatible with sdx
|
| 728 |
+
def predict_noise(
|
| 729 |
+
self,
|
| 730 |
+
prompt: Union[str, List[str]] = None,
|
| 731 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 732 |
+
num_inference_steps: int = 50,
|
| 733 |
+
guidance_scale: float = 5.0,
|
| 734 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 735 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 736 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 737 |
+
eta: float = 0.0,
|
| 738 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 739 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 740 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 741 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 742 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 743 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 744 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 745 |
+
guidance_rescale: float = 0.0,
|
| 746 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 747 |
+
timestep: Optional[int] = None,
|
| 748 |
+
):
|
| 749 |
+
|
| 750 |
+
# 0. Default height and width to unet
|
| 751 |
+
height = self.unet.config.sample_size * self.vae_scale_factor
|
| 752 |
+
width = self.unet.config.sample_size * self.vae_scale_factor
|
| 753 |
+
|
| 754 |
+
# 2. Define call parameters
|
| 755 |
+
if prompt is not None and isinstance(prompt, str):
|
| 756 |
+
batch_size = 1
|
| 757 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 758 |
+
batch_size = len(prompt)
|
| 759 |
+
else:
|
| 760 |
+
batch_size = prompt_embeds.shape[0]
|
| 761 |
+
|
| 762 |
+
device = self._execution_device
|
| 763 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 764 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 765 |
+
# corresponds to doing no classifier free guidance.
|
| 766 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 767 |
+
|
| 768 |
+
# 3. Encode input prompt
|
| 769 |
+
text_encoder_lora_scale = (
|
| 770 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
| 771 |
+
)
|
| 772 |
+
prompt_embeds = self._encode_prompt(
|
| 773 |
+
prompt,
|
| 774 |
+
device,
|
| 775 |
+
num_images_per_prompt,
|
| 776 |
+
do_classifier_free_guidance,
|
| 777 |
+
negative_prompt,
|
| 778 |
+
prompt_embeds=prompt_embeds,
|
| 779 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 780 |
+
lora_scale=text_encoder_lora_scale,
|
| 781 |
+
)
|
| 782 |
+
|
| 783 |
+
# 4. Prepare timesteps
|
| 784 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 785 |
+
|
| 786 |
+
# 5. Prepare latent variables
|
| 787 |
+
num_channels_latents = self.unet.config.in_channels
|
| 788 |
+
latents = self.prepare_latents(
|
| 789 |
+
batch_size * num_images_per_prompt,
|
| 790 |
+
num_channels_latents,
|
| 791 |
+
height,
|
| 792 |
+
width,
|
| 793 |
+
prompt_embeds.dtype,
|
| 794 |
+
device,
|
| 795 |
+
generator,
|
| 796 |
+
latents,
|
| 797 |
+
)
|
| 798 |
+
|
| 799 |
+
# expand the latents if we are doing classifier free guidance
|
| 800 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 801 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep)
|
| 802 |
+
|
| 803 |
+
# predict the noise residual
|
| 804 |
+
noise_pred = self.unet(
|
| 805 |
+
latent_model_input,
|
| 806 |
+
timestep,
|
| 807 |
+
encoder_hidden_states=prompt_embeds,
|
| 808 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 809 |
+
return_dict=False,
|
| 810 |
+
)[0]
|
| 811 |
+
|
| 812 |
+
# perform guidance
|
| 813 |
+
if do_classifier_free_guidance:
|
| 814 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 815 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 816 |
+
|
| 817 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
| 818 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
| 819 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
| 820 |
+
|
| 821 |
+
return noise_pred
|
| 822 |
+
|
| 823 |
+
|
| 824 |
+
class StableDiffusionXLRefinerPipeline(StableDiffusionXLPipeline):
|
| 825 |
+
|
| 826 |
+
@torch.no_grad()
|
| 827 |
+
def __call__(
|
| 828 |
+
self,
|
| 829 |
+
prompt: Union[str, List[str]] = None,
|
| 830 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 831 |
+
height: Optional[int] = None,
|
| 832 |
+
width: Optional[int] = None,
|
| 833 |
+
num_inference_steps: int = 50,
|
| 834 |
+
denoising_end: Optional[float] = None,
|
| 835 |
+
denoising_start: Optional[float] = None,
|
| 836 |
+
guidance_scale: float = 5.0,
|
| 837 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 838 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 839 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 840 |
+
eta: float = 0.0,
|
| 841 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 842 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 843 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 844 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 845 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 846 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 847 |
+
output_type: Optional[str] = "pil",
|
| 848 |
+
return_dict: bool = True,
|
| 849 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 850 |
+
callback_steps: int = 1,
|
| 851 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 852 |
+
guidance_rescale: float = 0.0,
|
| 853 |
+
original_size: Optional[Tuple[int, int]] = None,
|
| 854 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 855 |
+
target_size: Optional[Tuple[int, int]] = None,
|
| 856 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
| 857 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 858 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
| 859 |
+
clip_skip: Optional[int] = None,
|
| 860 |
+
):
|
| 861 |
+
r"""
|
| 862 |
+
Function invoked when calling the pipeline for generation.
|
| 863 |
+
|
| 864 |
+
Args:
|
| 865 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 866 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 867 |
+
instead.
|
| 868 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 869 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 870 |
+
used in both text-encoders
|
| 871 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 872 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 873 |
+
Anything below 512 pixels won't work well for
|
| 874 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
| 875 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
| 876 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 877 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 878 |
+
Anything below 512 pixels won't work well for
|
| 879 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
| 880 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
| 881 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 882 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 883 |
+
expense of slower inference.
|
| 884 |
+
denoising_end (`float`, *optional*):
|
| 885 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
| 886 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
| 887 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
| 888 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
| 889 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
| 890 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
| 891 |
+
denoising_start (`float`, *optional*):
|
| 892 |
+
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
| 893 |
+
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
| 894 |
+
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
| 895 |
+
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
| 896 |
+
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image
|
| 897 |
+
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
|
| 898 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
| 899 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 900 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 901 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 902 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 903 |
+
usually at the expense of lower image quality.
|
| 904 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 905 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 906 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 907 |
+
less than `1`).
|
| 908 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 909 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 910 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
| 911 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 912 |
+
The number of images to generate per prompt.
|
| 913 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 914 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 915 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 916 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 917 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 918 |
+
to make generation deterministic.
|
| 919 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 920 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 921 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 922 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 923 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 924 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 925 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 926 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 927 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 928 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 929 |
+
argument.
|
| 930 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 931 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 932 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 933 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 934 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 935 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 936 |
+
input argument.
|
| 937 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 938 |
+
The output format of the generate image. Choose between
|
| 939 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 940 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 941 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
| 942 |
+
of a plain tuple.
|
| 943 |
+
callback (`Callable`, *optional*):
|
| 944 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 945 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 946 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 947 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 948 |
+
called at every step.
|
| 949 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 950 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 951 |
+
`self.processor` in
|
| 952 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 953 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
| 954 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
| 955 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
| 956 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
| 957 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
| 958 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 959 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
| 960 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
| 961 |
+
explained in section 2.2 of
|
| 962 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 963 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
| 964 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
| 965 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
| 966 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
| 967 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 968 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 969 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
| 970 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
| 971 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 972 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 973 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
| 974 |
+
micro-conditioning as explained in section 2.2 of
|
| 975 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
| 976 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
| 977 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
| 978 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
| 979 |
+
micro-conditioning as explained in section 2.2 of
|
| 980 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
| 981 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
| 982 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 983 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
| 984 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
| 985 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
| 986 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
| 987 |
+
|
| 988 |
+
Examples:
|
| 989 |
+
|
| 990 |
+
Returns:
|
| 991 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
| 992 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
| 993 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
| 994 |
+
"""
|
| 995 |
+
# 0. Default height and width to unet
|
| 996 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 997 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 998 |
+
|
| 999 |
+
original_size = original_size or (height, width)
|
| 1000 |
+
target_size = target_size or (height, width)
|
| 1001 |
+
|
| 1002 |
+
# 1. Check inputs. Raise error if not correct
|
| 1003 |
+
self.check_inputs(
|
| 1004 |
+
prompt,
|
| 1005 |
+
prompt_2,
|
| 1006 |
+
height,
|
| 1007 |
+
width,
|
| 1008 |
+
callback_steps,
|
| 1009 |
+
negative_prompt,
|
| 1010 |
+
negative_prompt_2,
|
| 1011 |
+
prompt_embeds,
|
| 1012 |
+
negative_prompt_embeds,
|
| 1013 |
+
pooled_prompt_embeds,
|
| 1014 |
+
negative_pooled_prompt_embeds,
|
| 1015 |
+
)
|
| 1016 |
+
|
| 1017 |
+
# 2. Define call parameters
|
| 1018 |
+
if prompt is not None and isinstance(prompt, str):
|
| 1019 |
+
batch_size = 1
|
| 1020 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 1021 |
+
batch_size = len(prompt)
|
| 1022 |
+
else:
|
| 1023 |
+
batch_size = prompt_embeds.shape[0]
|
| 1024 |
+
|
| 1025 |
+
device = self._execution_device
|
| 1026 |
+
|
| 1027 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 1028 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 1029 |
+
# corresponds to doing no classifier free guidance.
|
| 1030 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 1031 |
+
|
| 1032 |
+
# 3. Encode input prompt
|
| 1033 |
+
lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
| 1034 |
+
|
| 1035 |
+
(
|
| 1036 |
+
prompt_embeds,
|
| 1037 |
+
negative_prompt_embeds,
|
| 1038 |
+
pooled_prompt_embeds,
|
| 1039 |
+
negative_pooled_prompt_embeds,
|
| 1040 |
+
) = self.encode_prompt(
|
| 1041 |
+
prompt=prompt,
|
| 1042 |
+
prompt_2=prompt_2,
|
| 1043 |
+
device=device,
|
| 1044 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1045 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 1046 |
+
negative_prompt=negative_prompt,
|
| 1047 |
+
negative_prompt_2=negative_prompt_2,
|
| 1048 |
+
prompt_embeds=prompt_embeds,
|
| 1049 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1050 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1051 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1052 |
+
lora_scale=lora_scale,
|
| 1053 |
+
clip_skip=clip_skip,
|
| 1054 |
+
)
|
| 1055 |
+
|
| 1056 |
+
# 4. Prepare timesteps
|
| 1057 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 1058 |
+
|
| 1059 |
+
timesteps = self.scheduler.timesteps
|
| 1060 |
+
|
| 1061 |
+
# 5. Prepare latent variables
|
| 1062 |
+
num_channels_latents = self.unet.config.in_channels
|
| 1063 |
+
latents = self.prepare_latents(
|
| 1064 |
+
batch_size * num_images_per_prompt,
|
| 1065 |
+
num_channels_latents,
|
| 1066 |
+
height,
|
| 1067 |
+
width,
|
| 1068 |
+
prompt_embeds.dtype,
|
| 1069 |
+
device,
|
| 1070 |
+
generator,
|
| 1071 |
+
latents,
|
| 1072 |
+
)
|
| 1073 |
+
|
| 1074 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 1075 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 1076 |
+
|
| 1077 |
+
# 7. Prepare added time ids & embeddings
|
| 1078 |
+
add_text_embeds = pooled_prompt_embeds
|
| 1079 |
+
if self.text_encoder_2 is None:
|
| 1080 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
| 1081 |
+
else:
|
| 1082 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
| 1083 |
+
|
| 1084 |
+
add_time_ids = self._get_add_time_ids(
|
| 1085 |
+
original_size,
|
| 1086 |
+
crops_coords_top_left,
|
| 1087 |
+
target_size,
|
| 1088 |
+
dtype=prompt_embeds.dtype,
|
| 1089 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
| 1090 |
+
)
|
| 1091 |
+
if negative_original_size is not None and negative_target_size is not None:
|
| 1092 |
+
negative_add_time_ids = self._get_add_time_ids(
|
| 1093 |
+
negative_original_size,
|
| 1094 |
+
negative_crops_coords_top_left,
|
| 1095 |
+
negative_target_size,
|
| 1096 |
+
dtype=prompt_embeds.dtype,
|
| 1097 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
| 1098 |
+
)
|
| 1099 |
+
else:
|
| 1100 |
+
negative_add_time_ids = add_time_ids
|
| 1101 |
+
|
| 1102 |
+
if do_classifier_free_guidance:
|
| 1103 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 1104 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
| 1105 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
| 1106 |
+
|
| 1107 |
+
prompt_embeds = prompt_embeds.to(device)
|
| 1108 |
+
add_text_embeds = add_text_embeds.to(device)
|
| 1109 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
| 1110 |
+
|
| 1111 |
+
# 8. Denoising loop
|
| 1112 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 1113 |
+
|
| 1114 |
+
# 8.1 Apply denoising_end
|
| 1115 |
+
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
|
| 1116 |
+
discrete_timestep_cutoff = int(
|
| 1117 |
+
round(
|
| 1118 |
+
self.scheduler.config.num_train_timesteps
|
| 1119 |
+
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
| 1120 |
+
)
|
| 1121 |
+
)
|
| 1122 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
| 1123 |
+
timesteps = timesteps[:num_inference_steps]
|
| 1124 |
+
|
| 1125 |
+
# 8.2 Determine denoising_start
|
| 1126 |
+
denoising_start_index = 0
|
| 1127 |
+
if denoising_start is not None and isinstance(denoising_start, float) and denoising_start > 0 and denoising_start < 1:
|
| 1128 |
+
discrete_timestep_start = int(
|
| 1129 |
+
round(
|
| 1130 |
+
self.scheduler.config.num_train_timesteps
|
| 1131 |
+
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
| 1132 |
+
)
|
| 1133 |
+
)
|
| 1134 |
+
denoising_start_index = len(list(filter(lambda ts: ts < discrete_timestep_start, timesteps)))
|
| 1135 |
+
|
| 1136 |
+
|
| 1137 |
+
with self.progress_bar(total=num_inference_steps - denoising_start_index) as progress_bar:
|
| 1138 |
+
for i, t in enumerate(timesteps, start=denoising_start_index):
|
| 1139 |
+
# expand the latents if we are doing classifier free guidance
|
| 1140 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 1141 |
+
|
| 1142 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 1143 |
+
|
| 1144 |
+
# predict the noise residual
|
| 1145 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
| 1146 |
+
noise_pred = self.unet(
|
| 1147 |
+
latent_model_input,
|
| 1148 |
+
t,
|
| 1149 |
+
encoder_hidden_states=prompt_embeds,
|
| 1150 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1151 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 1152 |
+
return_dict=False,
|
| 1153 |
+
)[0]
|
| 1154 |
+
|
| 1155 |
+
# perform guidance
|
| 1156 |
+
if do_classifier_free_guidance:
|
| 1157 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1158 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1159 |
+
|
| 1160 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
| 1161 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
| 1162 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
| 1163 |
+
|
| 1164 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1165 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
| 1166 |
+
|
| 1167 |
+
# call the callback, if provided
|
| 1168 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1169 |
+
progress_bar.update()
|
| 1170 |
+
if callback is not None and i % callback_steps == 0:
|
| 1171 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 1172 |
+
callback(step_idx, t, latents)
|
| 1173 |
+
|
| 1174 |
+
if XLA_AVAILABLE:
|
| 1175 |
+
xm.mark_step()
|
| 1176 |
+
|
| 1177 |
+
if not output_type == "latent":
|
| 1178 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
| 1179 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
| 1180 |
+
|
| 1181 |
+
if needs_upcasting:
|
| 1182 |
+
self.upcast_vae()
|
| 1183 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
| 1184 |
+
|
| 1185 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 1186 |
+
|
| 1187 |
+
# cast back to fp16 if needed
|
| 1188 |
+
if needs_upcasting:
|
| 1189 |
+
self.vae.to(dtype=torch.float16)
|
| 1190 |
+
else:
|
| 1191 |
+
image = latents
|
| 1192 |
+
|
| 1193 |
+
if not output_type == "latent":
|
| 1194 |
+
# apply watermark if available
|
| 1195 |
+
if self.watermark is not None:
|
| 1196 |
+
image = self.watermark.apply_watermark(image)
|
| 1197 |
+
|
| 1198 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1199 |
+
|
| 1200 |
+
# Offload all models
|
| 1201 |
+
self.maybe_free_model_hooks()
|
| 1202 |
+
|
| 1203 |
+
if not return_dict:
|
| 1204 |
+
return (image,)
|
| 1205 |
+
|
| 1206 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
| 1207 |
+
|
| 1208 |
+
|
| 1209 |
+
|
| 1210 |
+
|
| 1211 |
+
# TODO this is rough. Need to properly stack unconditional
|
| 1212 |
+
class FluxWithCFGPipeline(FluxPipeline):
|
| 1213 |
+
def __call__(
|
| 1214 |
+
self,
|
| 1215 |
+
prompt: Union[str, List[str]] = None,
|
| 1216 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 1217 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 1218 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 1219 |
+
height: Optional[int] = None,
|
| 1220 |
+
width: Optional[int] = None,
|
| 1221 |
+
num_inference_steps: int = 28,
|
| 1222 |
+
timesteps: List[int] = None,
|
| 1223 |
+
guidance_scale: float = 7.0,
|
| 1224 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 1225 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 1226 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 1227 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1228 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1229 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1230 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1231 |
+
output_type: Optional[str] = "pil",
|
| 1232 |
+
return_dict: bool = True,
|
| 1233 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1234 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 1235 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 1236 |
+
max_sequence_length: int = 512,
|
| 1237 |
+
):
|
| 1238 |
+
|
| 1239 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 1240 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 1241 |
+
|
| 1242 |
+
# 1. Check inputs. Raise error if not correct
|
| 1243 |
+
self.check_inputs(
|
| 1244 |
+
prompt,
|
| 1245 |
+
prompt_2,
|
| 1246 |
+
height,
|
| 1247 |
+
width,
|
| 1248 |
+
prompt_embeds=prompt_embeds,
|
| 1249 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1250 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 1251 |
+
max_sequence_length=max_sequence_length,
|
| 1252 |
+
)
|
| 1253 |
+
|
| 1254 |
+
self._guidance_scale = guidance_scale
|
| 1255 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 1256 |
+
self._interrupt = False
|
| 1257 |
+
|
| 1258 |
+
# 2. Define call parameters
|
| 1259 |
+
if prompt is not None and isinstance(prompt, str):
|
| 1260 |
+
batch_size = 1
|
| 1261 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 1262 |
+
batch_size = len(prompt)
|
| 1263 |
+
else:
|
| 1264 |
+
batch_size = prompt_embeds.shape[0]
|
| 1265 |
+
|
| 1266 |
+
device = self._execution_device
|
| 1267 |
+
|
| 1268 |
+
lora_scale = (
|
| 1269 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
| 1270 |
+
)
|
| 1271 |
+
(
|
| 1272 |
+
prompt_embeds,
|
| 1273 |
+
pooled_prompt_embeds,
|
| 1274 |
+
text_ids,
|
| 1275 |
+
) = self.encode_prompt(
|
| 1276 |
+
prompt=prompt,
|
| 1277 |
+
prompt_2=prompt_2,
|
| 1278 |
+
prompt_embeds=prompt_embeds,
|
| 1279 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1280 |
+
device=device,
|
| 1281 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1282 |
+
max_sequence_length=max_sequence_length,
|
| 1283 |
+
lora_scale=lora_scale,
|
| 1284 |
+
)
|
| 1285 |
+
(
|
| 1286 |
+
negative_prompt_embeds,
|
| 1287 |
+
negative_pooled_prompt_embeds,
|
| 1288 |
+
negative_text_ids,
|
| 1289 |
+
) = self.encode_prompt(
|
| 1290 |
+
prompt=negative_prompt,
|
| 1291 |
+
prompt_2=negative_prompt_2,
|
| 1292 |
+
prompt_embeds=negative_prompt_embeds,
|
| 1293 |
+
pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1294 |
+
device=device,
|
| 1295 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1296 |
+
max_sequence_length=max_sequence_length,
|
| 1297 |
+
lora_scale=lora_scale,
|
| 1298 |
+
)
|
| 1299 |
+
|
| 1300 |
+
# 4. Prepare latent variables
|
| 1301 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
| 1302 |
+
latents, latent_image_ids = self.prepare_latents(
|
| 1303 |
+
batch_size * num_images_per_prompt,
|
| 1304 |
+
num_channels_latents,
|
| 1305 |
+
height,
|
| 1306 |
+
width,
|
| 1307 |
+
prompt_embeds.dtype,
|
| 1308 |
+
device,
|
| 1309 |
+
generator,
|
| 1310 |
+
latents,
|
| 1311 |
+
)
|
| 1312 |
+
|
| 1313 |
+
# 5. Prepare timesteps
|
| 1314 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
| 1315 |
+
image_seq_len = latents.shape[1]
|
| 1316 |
+
mu = calculate_shift(
|
| 1317 |
+
image_seq_len,
|
| 1318 |
+
self.scheduler.config.base_image_seq_len,
|
| 1319 |
+
self.scheduler.config.max_image_seq_len,
|
| 1320 |
+
self.scheduler.config.base_shift,
|
| 1321 |
+
self.scheduler.config.max_shift,
|
| 1322 |
+
)
|
| 1323 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 1324 |
+
self.scheduler,
|
| 1325 |
+
num_inference_steps,
|
| 1326 |
+
device,
|
| 1327 |
+
timesteps,
|
| 1328 |
+
sigmas,
|
| 1329 |
+
mu=mu,
|
| 1330 |
+
)
|
| 1331 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 1332 |
+
self._num_timesteps = len(timesteps)
|
| 1333 |
+
|
| 1334 |
+
# 6. Denoising loop
|
| 1335 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1336 |
+
for i, t in enumerate(timesteps):
|
| 1337 |
+
if self.interrupt:
|
| 1338 |
+
continue
|
| 1339 |
+
|
| 1340 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 1341 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
| 1342 |
+
|
| 1343 |
+
# handle guidance
|
| 1344 |
+
if self.transformer.config.guidance_embeds:
|
| 1345 |
+
guidance = torch.tensor([guidance_scale], device=device)
|
| 1346 |
+
guidance = guidance.expand(latents.shape[0])
|
| 1347 |
+
else:
|
| 1348 |
+
guidance = None
|
| 1349 |
+
|
| 1350 |
+
noise_pred_text = self.transformer(
|
| 1351 |
+
hidden_states=latents,
|
| 1352 |
+
timestep=timestep / 1000,
|
| 1353 |
+
guidance=guidance,
|
| 1354 |
+
pooled_projections=pooled_prompt_embeds,
|
| 1355 |
+
encoder_hidden_states=prompt_embeds,
|
| 1356 |
+
txt_ids=text_ids,
|
| 1357 |
+
img_ids=latent_image_ids,
|
| 1358 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 1359 |
+
return_dict=False,
|
| 1360 |
+
)[0]
|
| 1361 |
+
|
| 1362 |
+
# todo combine these
|
| 1363 |
+
noise_pred_uncond = self.transformer(
|
| 1364 |
+
hidden_states=latents,
|
| 1365 |
+
timestep=timestep / 1000,
|
| 1366 |
+
guidance=guidance,
|
| 1367 |
+
pooled_projections=negative_pooled_prompt_embeds,
|
| 1368 |
+
encoder_hidden_states=negative_prompt_embeds,
|
| 1369 |
+
txt_ids=negative_text_ids,
|
| 1370 |
+
img_ids=latent_image_ids,
|
| 1371 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 1372 |
+
return_dict=False,
|
| 1373 |
+
)[0]
|
| 1374 |
+
|
| 1375 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1376 |
+
|
| 1377 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1378 |
+
latents_dtype = latents.dtype
|
| 1379 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 1380 |
+
|
| 1381 |
+
if latents.dtype != latents_dtype:
|
| 1382 |
+
if torch.backends.mps.is_available():
|
| 1383 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 1384 |
+
latents = latents.to(latents_dtype)
|
| 1385 |
+
|
| 1386 |
+
if callback_on_step_end is not None:
|
| 1387 |
+
callback_kwargs = {}
|
| 1388 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 1389 |
+
callback_kwargs[k] = locals()[k]
|
| 1390 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 1391 |
+
|
| 1392 |
+
latents = callback_outputs.pop("latents", latents)
|
| 1393 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1394 |
+
|
| 1395 |
+
# call the callback, if provided
|
| 1396 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1397 |
+
progress_bar.update()
|
| 1398 |
+
|
| 1399 |
+
if XLA_AVAILABLE:
|
| 1400 |
+
xm.mark_step()
|
| 1401 |
+
|
| 1402 |
+
if output_type == "latent":
|
| 1403 |
+
image = latents
|
| 1404 |
+
|
| 1405 |
+
else:
|
| 1406 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
| 1407 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 1408 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
| 1409 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1410 |
+
|
| 1411 |
+
# Offload all models
|
| 1412 |
+
self.maybe_free_model_hooks()
|
| 1413 |
+
|
| 1414 |
+
if not return_dict:
|
| 1415 |
+
return (image,)
|
| 1416 |
+
|
| 1417 |
+
return FluxPipelineOutput(images=image)
|