gokaygokay commited on
Commit
d48b729
·
verified ·
1 Parent(s): 181bfb3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -16
app.py CHANGED
@@ -15,11 +15,13 @@ from pytorch_lightning import seed_everything
15
  from omegaconf import OmegaConf
16
  from einops import rearrange, repeat
17
  from tqdm import tqdm
18
- from diffusers import FluxPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler
19
  import gradio as gr
20
  import shutil
21
  import tempfile
22
  from functools import partial
 
 
23
 
24
  from src.utils.train_util import instantiate_from_config
25
  from src.utils.camera_util import (
@@ -69,11 +71,24 @@ if cuda_path:
69
  else:
70
  print("CUDA installation not found")
71
 
72
- # Load Flux pipeline
73
- flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, token=huggingface_token)
74
- flux_pipe.load_lora_weights(hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors"))
75
- flux_pipe.fuse_lora(lora_scale=1)
76
- flux_pipe.to(device="cuda", dtype=torch.bfloat16)
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
  # Load 3D generation models
79
  config_path = 'configs/instant-mesh-large.yaml'
@@ -135,18 +150,20 @@ def preprocess(input_image, do_remove_background):
135
  input_image = resize_foreground(input_image, 0.85)
136
  return input_image
137
 
 
 
138
  @spaces.GPU
139
  def generate_flux_image(prompt, height, width, steps, scales, seed):
140
- with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("Flux inference"):
141
- return flux_pipe(
142
- prompt=[prompt],
143
- generator=torch.Generator().manual_seed(int(seed)),
144
- num_inference_steps=int(steps),
145
- guidance_scale=float(scales),
146
- height=int(height),
147
- width=int(width),
148
- max_sequence_length=256
149
- ).images[0]
150
 
151
  @spaces.GPU
152
  def generate_mvs(input_image, sample_steps, sample_seed):
 
15
  from omegaconf import OmegaConf
16
  from einops import rearrange, repeat
17
  from tqdm import tqdm
18
+ from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
19
  import gradio as gr
20
  import shutil
21
  import tempfile
22
  from functools import partial
23
+ from optimum.quanto import quantize, qfloat8, freeze
24
+ from flux_8bit_lora import FluxPipeline
25
 
26
  from src.utils.train_util import instantiate_from_config
27
  from src.utils.camera_util import (
 
71
  else:
72
  print("CUDA installation not found")
73
 
74
+
75
+
76
+ base_model = "black-forest-labs/FLUX.1-dev"
77
+ pipe = FluxPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16, token=huggingface_token)
78
+
79
+ print('Loading and fusing lora, please wait...')
80
+ pipe.load_lora_weights(hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors"))
81
+ # We need this scaling because SimpleTuner fixes the alpha to 16, might be fixed later in diffusers
82
+ # See https://github.com/huggingface/diffusers/issues/9134
83
+ pipe.fuse_lora(lora_scale=1.)
84
+ pipe.unload_lora_weights()
85
+
86
+ print('Quantizing, please wait...')
87
+ quantize(pipe.transformer, qfloat8)
88
+ freeze(pipe.transformer)
89
+ print('Model quantized!')
90
+ pipe.to('cuda')
91
+
92
 
93
  # Load 3D generation models
94
  config_path = 'configs/instant-mesh-large.yaml'
 
150
  input_image = resize_foreground(input_image, 0.85)
151
  return input_image
152
 
153
+ ts_cutoff = 2
154
+
155
  @spaces.GPU
156
  def generate_flux_image(prompt, height, width, steps, scales, seed):
157
+ return pipe(
158
+ prompt=prompt,
159
+ width=int(height),
160
+ height=int(width),
161
+ num_inference_steps=int(steps),
162
+ generator=torch.Generator().manual_seed(int(seed)),
163
+ guidance_scale=float(scales),
164
+ timestep_to_start_cfg=ts_cutoff,
165
+ ).images[0]
166
+
167
 
168
  @spaces.GPU
169
  def generate_mvs(input_image, sample_steps, sample_seed):