Spaces:
Running
on
Zero
Running
on
Zero
File size: 68,353 Bytes
565a2da ae33a9e 565a2da d471634 565a2da d9dee7c 565a2da d9dee7c 565a2da 97f2938 bfdebac 97f2938 37f1d99 97f2938 d9dee7c 7380a20 d9dee7c 7380a20 d9dee7c ccb2f86 d9dee7c 7380a20 d9dee7c 7380a20 d9dee7c 7380a20 d9dee7c 37f1d99 d9dee7c 7380a20 d9dee7c 7380a20 d9dee7c 7380a20 d9dee7c 7380a20 9b17987 37f1d99 d9dee7c 37f1d99 d9dee7c 7380a20 d9dee7c 7380a20 d9dee7c 37f1d99 d9dee7c 565a2da ccb2f86 565a2da 7aa7a12 565a2da 6c4e820 3aeca45 09cc71e 1829498 ccb2f86 565a2da ccb2f86 565a2da d471634 ccb2f86 d9dee7c ccb2f86 d9dee7c ccb2f86 b8361cc 838f64e d9dee7c 1829498 d9dee7c ccb2f86 44a062c ccb2f86 960406b ccb2f86 d9dee7c ccb2f86 d9dee7c ccb2f86 7380a20 ccb2f86 3649171 d9dee7c ccb2f86 3649171 d9dee7c ccb2f86 3649171 565a2da d9dee7c 565a2da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 |
import gradio as gr
import spaces
import argparse
import inspect
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import matplotlib.pyplot as plt
from PIL import Image
import torch
import torch.nn.functional as F
import numpy as np
import random
import warnings
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from utils import *
import hashlib
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import (
FromSingleFileMixin,
LoraLoaderMixin,
TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
is_accelerate_available,
is_accelerate_version,
is_invisible_watermark_available,
logging,
replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
from accelerate.utils import set_seed
from tqdm import tqdm
if is_invisible_watermark_available():
from .watermark import StableDiffusionXLWatermarker
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import StableDiffusionXLPipeline
>>> pipe = StableDiffusionXLPipeline.from_pretrained(
... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")
>>> prompt = "a photo of an astronaut riding a horse on mars"
>>> image = pipe(prompt).images[0]
```
"""
def gaussian_kernel(kernel_size=3, sigma=1.0, channels=3):
x_coord = torch.arange(kernel_size)
gaussian_1d = torch.exp(-(x_coord - (kernel_size - 1) / 2) ** 2 / (2 * sigma ** 2))
gaussian_1d = gaussian_1d / gaussian_1d.sum()
gaussian_2d = gaussian_1d[:, None] * gaussian_1d[None, :]
kernel = gaussian_2d[None, None, :, :].repeat(channels, 1, 1, 1)
return kernel
def gaussian_filter(latents, kernel_size=3, sigma=1.0):
channels = latents.shape[1]
kernel = gaussian_kernel(kernel_size, sigma, channels).to(latents.device, latents.dtype)
blurred_latents = F.conv2d(latents, kernel, padding=kernel_size//2, groups=channels)
return blurred_latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class AccDiffusionSDXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin):
"""
Pipeline for text-to-image generation using Stable Diffusion XL.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
In addition the pipeline inherits the following loading methods:
- *LoRA*: [`StableDiffusionXLPipeline.load_lora_weights`]
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
as well as the following saving methods:
- *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`]
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder.
text_encoder_2 ([`CLIPTextModelWithProjection`]):
Second frozen text-encoder.
tokenizer (`CLIPTokenizer`):
Tokenizer.
tokenizer_2 (`CLIPTokenizer`):
Second Tokenizer.
unet ([`UNet2DConditionModel`]):
Conditional U-Net architecture.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet`.
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
Whether the negative prompt embeddings shall be forced to always be set to 0.
add_watermarker (`bool`, *optional*):
Whether to use the invisible watermark library.
"""
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
text_encoder_2: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
tokenizer_2: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
force_zeros_for_empty_prompt: bool = True,
add_watermarker: Optional[bool] = None,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
unet=unet,
scheduler=scheduler,
)
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.default_sample_size = self.unet.config.sample_size
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
if add_watermarker:
self.watermark = StableDiffusionXLWatermarker()
else:
self.watermark = None
def enable_vae_slicing(self):
self.vae.enable_slicing()
def disable_vae_slicing(self):
self.vae.disable_slicing()
def enable_vae_tiling(self):
self.vae.enable_tiling()
def disable_vae_tiling(self):
self.vae.disable_tiling()
def encode_prompt(
self,
prompt: str,
prompt_2: Optional[str] = None,
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[str] = None,
negative_prompt_2: Optional[str] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
device = device or self._execution_device
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
text_encoders = (
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
)
if prompt_embeds is None:
prompt_2 = prompt_2 or prompt
prompt_embeds_list = []
prompts = [prompt, prompt_2]
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, tokenizer)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {tokenizer.model_max_length} tokens: {removed_text}"
)
prompt_embeds = text_encoder(
text_input_ids.to(device),
output_hidden_states=True,
)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
elif do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt_2 = negative_prompt_2 or negative_prompt
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt, negative_prompt_2]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = [negative_prompt, negative_prompt_2]
negative_prompt_embeds_list = []
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
if isinstance(self, TextualInversionLoaderMixin):
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = tokenizer(
negative_prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds = text_encoder(
uncond_input.input_ids.to(device),
output_hidden_states=True,
)
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
negative_prompt_embeds_list.append(negative_prompt_embeds)
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
if do_classifier_free_guidance:
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
def prepare_extra_step_kwargs(self, generator, eta):
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
prompt_2,
height,
width,
callback_steps,
negative_prompt=None,
negative_prompt_2=None,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
num_images_per_prompt=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two."
)
elif prompt_2 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}."
)
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
)
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
if max(height, width) % 1024 != 0:
raise ValueError(f"the larger one of `height` and `width` has to be divisible by 1024 but are {height} and {width}.")
if num_images_per_prompt != 1:
warnings.warn("num_images_per_prompt != 1 is not supported by AccDiffusion and will be ignored.")
num_images_per_prompt = 1
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
latents = latents * self.scheduler.init_noise_sigma
return latents
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
add_time_ids = list(original_size + crops_coords_top_left + target_size)
passed_add_embed_dim = (
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
)
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. \
The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
def get_views(self, height, width, window_size=128, stride=64, random_jitter=False):
height //= self.vae_scale_factor
width //= self.vae_scale_factor
num_blocks_height = int((height - window_size) / stride - 1e-6) + 2 if height > window_size else 1
num_blocks_width = int((width - window_size) / stride - 1e-6) + 2 if width > window_size else 1
total_num_blocks = int(num_blocks_height * num_blocks_width)
views = []
for i in range(total_num_blocks):
h_start = int((i // num_blocks_width) * stride)
h_end = h_start + window_size
w_start = int((i % num_blocks_width) * stride)
w_end = w_start + window_size
if h_end > height:
h_start = int(h_start + height - h_end)
h_end = int(height)
if w_end > width:
w_start = int(w_start + width - w_end)
w_end = int(width)
if h_start < 0:
h_end = int(h_end - h_start)
h_start = 0
if w_start < 0:
w_end = int(w_end - w_start)
w_start = 0
if random_jitter:
jitter_range = (window_size - stride) // 4
w_jitter = 0
h_jitter = 0
if (w_start != 0) and (w_end != width):
w_jitter = random.randint(-jitter_range, jitter_range)
elif (w_start == 0) and (w_end != width):
w_jitter = random.randint(-jitter_range, 0)
elif (w_start != 0) and (w_end == width):
w_jitter = random.randint(0, jitter_range)
if (h_start != 0) and (h_end != height):
h_jitter = random.randint(-jitter_range, jitter_range)
elif (h_start == 0) and (h_end != height):
h_jitter = random.randint(-jitter_range, 0)
elif (h_start != 0) and (h_end == height):
h_jitter = random.randint(0, jitter_range)
h_start = h_start + h_jitter + jitter_range
h_end = h_end + h_jitter + jitter_range
w_start = w_start + w_jitter + jitter_range
w_end = w_end + w_jitter + jitter_range
views.append((h_start, h_end, w_start, w_end))
return views
def upcast_vae(self):
dtype = self.vae.dtype
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
def register_attention_control(self, controller):
attn_procs = {}
cross_att_count = 0
ori_attn_processors = self.unet.attn_processors
for name in self.unet.attn_processors.keys():
if name.startswith("mid_block"):
place_in_unet = "mid"
elif name.startswith("up_blocks"):
place_in_unet = "up"
elif name.startswith("down_blocks"):
place_in_unet = "down"
else:
continue
cross_att_count += 1
attn_procs[name] = P2PCrossAttnProcessor(controller=controller, place_in_unet=place_in_unet)
self.unet.set_attn_processor(attn_procs)
controller.num_att_layers = cross_att_count
return ori_attn_processors
def recover_attention_control(self, ori_attn_processors):
self.unet.set_attn_processor(ori_attn_processors)
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
else:
raise ImportError("Offloading requires `accelerate v0.17.0` or higher.")
is_model_cpu_offload = False
is_sequential_cpu_offload = False
recursive = False
for _, component in self.components.items():
if isinstance(component, torch.nn.Module):
if hasattr(component, "_hf_hook"):
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
logger.info(
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
)
recursive = is_sequential_cpu_offload
remove_hook_from_module(component, recurse=recursive)
state_dict, network_alphas = self.lora_state_dict(
pretrained_model_name_or_path_or_dict,
unet_config=self.unet.config,
**kwargs,
)
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
)
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
if len(text_encoder_2_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_2_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder_2,
prefix="text_encoder_2",
lora_scale=self.lora_scale,
)
if is_model_cpu_offload:
self.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
self.enable_sequential_cpu_offload()
@classmethod
def save_lora_weights(
self,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
state_dict = {}
def pack_weights(layers, prefix):
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
return layers_state_dict
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
raise ValueError(
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
)
if unet_lora_layers:
state_dict.update(pack_weights(unet_lora_layers, "unet"))
if text_encoder_lora_layers and text_encoder_2_lora_layers:
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
self.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def _remove_text_encoder_monkey_patch(self):
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = False,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
################### AccDiffusion specific parameters ####################
image_lr: Optional[torch.FloatTensor] = None,
view_batch_size: int = 16,
multi_decoder: bool = True,
stride: Optional[int] = 64,
cosine_scale_1: Optional[float] = 3.,
cosine_scale_2: Optional[float] = 1.,
cosine_scale_3: Optional[float] = 1.,
sigma: Optional[float] = 1.0,
lowvram: bool = False,
multi_guidance_scale: Optional[float] = 7.5,
use_guassian: bool = True,
upscale_mode: Union[str, List[str]] = 'bicubic_latent',
use_multidiffusion: bool = True,
use_dilated_sampling : bool = True,
use_skip_residual: bool = True,
use_progressive_upscaling: bool = True,
shuffle: bool = False,
result_path: str = './outputs/AccDiffusion',
debug: bool = False,
use_md_prompt: bool = False,
attn_res=None,
save_attention_map: bool = False,
seed: Optional[int] = None,
c : Optional[float] = 0.3,
):
"""
Stable Diffusion XL κΈ°λ° AccDiffusion νμ΄νλΌμΈμ ν΅ν΄ μ΄λ―Έμ§λ₯Ό μμ±νλ ν¨μμ
λλ€.
μ΄ ν¨μλ μ£Όμ΄μ§ ν둬ννΈλ₯Ό μΈμ½λ©νκ³ , λλ
Έμ΄μ§ λ° progressive upscaling κ³Όμ μ κ±°μ³ μ΅μ’
μ΄λ―Έμ§λ₯Ό μμ±ν©λλ€.
μμΈν μ¬μ©λ²μ λ¬Έμλ₯Ό μ°Έκ³ νμΈμ.
Examples:
"""
if debug:
num_inference_steps = 1
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
x1_size = self.default_sample_size * self.vae_scale_factor
height_scale = height / x1_size
width_scale = width / x1_size
scale_num = int(max(height_scale, width_scale))
aspect_ratio = min(height_scale, width_scale) / max(height_scale, width_scale)
original_size = original_size or (height, width)
target_size = target_size or (height, width)
if attn_res is None:
attn_res = (int(np.ceil(self.default_sample_size * self.vae_scale_factor / 32)), int(np.ceil(self.default_sample_size * self.vae_scale_factor / 32)))
self.attn_res = attn_res
if lowvram:
attention_map_device = torch.device("cpu")
else:
attention_map_device = self.device
self.controller = create_controller(
prompt, cross_attention_kwargs, num_inference_steps, tokenizer=self.tokenizer, device=attention_map_device, attn_res=self.attn_res
)
if save_attention_map or use_md_prompt:
ori_attn_processors = self.register_attention_control(self.controller)
self.check_inputs(
prompt,
prompt_2,
height,
width,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
num_images_per_prompt,
)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
self.lowvram = lowvram
if self.lowvram:
self.vae.cpu()
self.unet.cpu()
self.text_encoder.to(device)
self.text_encoder_2.to(device)
do_classifier_free_guidance = guidance_scale > 1.0
text_encoder_lora_scale = (cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height // scale_num,
width // scale_num,
prompt_embeds.dtype,
device,
generator,
latents,
)
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
add_text_embeds = pooled_prompt_embeds
add_time_ids = self._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
)
if negative_original_size is not None and negative_target_size is not None:
negative_add_time_ids = self._get_add_time_ids(
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
)
else:
negative_add_time_ids = add_time_ids
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0).to(device)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0).to(device)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0).to(device).repeat(batch_size * num_images_per_prompt, 1)
del negative_prompt_embeds, negative_pooled_prompt_embeds, negative_add_time_ids
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps - (denoising_end * self.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
timesteps = timesteps[:num_inference_steps]
output_images = []
###################################################### Phase Initialization ########################################################
if self.lowvram:
self.text_encoder.cpu()
self.text_encoder_2.cpu()
if image_lr == None:
print("### Phase 1 Denoising ###")
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.lowvram:
self.vae.cpu()
self.unet.to(device)
latents_for_view = latents
latent_model_input = (
latents.repeat_interleave(2, dim=0)
if do_classifier_free_guidance
else latents
)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2]
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if t == 1 and use_md_prompt:
md_prompts, views_attention = get_multidiffusion_prompts(tokenizer=self.tokenizer, prompts=[prompt], threthod=c, attention_store=self.controller, height=height//scale_num, width=width//scale_num, from_where=["up","down"], random_jitter=True, scale_num=scale_num)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
del latents_for_view, latent_model_input, noise_pred, noise_pred_text, noise_pred_uncond
if use_md_prompt or save_attention_map:
self.recover_attention_control(ori_attn_processors=ori_attn_processors)
del self.controller
torch.cuda.empty_cache()
else:
print("### Encoding Real Image ###")
latents = self.vae.encode(image_lr)
latents = latents.latent_dist.sample() * self.vae.config.scaling_factor
anchor_mean = latents.mean()
anchor_std = latents.std()
if self.lowvram:
latents = latents.cpu()
torch.cuda.empty_cache()
if not output_type == "latent":
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if self.lowvram:
needs_upcasting = False
self.unet.cpu()
self.vae.to(device)
if needs_upcasting:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
if self.lowvram and multi_decoder:
current_width_height = self.unet.config.sample_size * self.vae_scale_factor
image = self.tiled_decode(latents, current_width_height, current_width_height)
else:
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
if needs_upcasting:
self.vae.to(dtype=torch.float16)
image = self.image_processor.postprocess(image, output_type=output_type)
if not os.path.exists(f'{result_path}'):
os.makedirs(f'{result_path}')
image_lr_save_path = f'{result_path}/{image[0].size[0]}_{image[0].size[1]}.png'
image[0].save(image_lr_save_path)
output_images.append(image[0])
####################################################### Phase Upscaling #####################################################
if use_progressive_upscaling:
if image_lr == None:
starting_scale = 2
else:
starting_scale = 1
else:
starting_scale = scale_num
for current_scale_num in range(starting_scale, scale_num + 1):
if self.lowvram:
latents = latents.to(device)
self.unet.to(device)
torch.cuda.empty_cache()
current_height = self.unet.config.sample_size * self.vae_scale_factor * current_scale_num
current_width = self.unet.config.sample_size * self.vae_scale_factor * current_scale_num
if height > width:
current_width = int(current_width * aspect_ratio)
else:
current_height = int(current_height * aspect_ratio)
if upscale_mode == "bicubic_latent" or debug:
latents = F.interpolate(latents.to(device), size=(int(current_height / self.vae_scale_factor), int(current_width / self.vae_scale_factor)), mode='bicubic')
else:
raise NotImplementedError
print("### Phase {} Denoising ###".format(current_scale_num))
noise_latents = []
noise = torch.randn_like(latents)
for timestep in timesteps:
noise_latent = self.scheduler.add_noise(latents, noise, timestep.unsqueeze(0))
noise_latents.append(noise_latent)
latents = noise_latents[0]
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
count = torch.zeros_like(latents)
value = torch.zeros_like(latents)
cosine_factor = 0.5 * (1 + torch.cos(torch.pi * (self.scheduler.config.num_train_timesteps - t) / self.scheduler.config.num_train_timesteps)).cpu()
if use_skip_residual:
c1 = cosine_factor ** cosine_scale_1
latents = latents * (1 - c1) + noise_latents[i] * c1
if use_multidiffusion:
if use_md_prompt:
md_prompt_embeds_list = []
md_add_text_embeds_list = []
for md_prompt in md_prompts[current_scale_num]:
(
md_prompt_embeds,
md_negative_prompt_embeds,
md_pooled_prompt_embeds,
md_negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=md_prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
lora_scale=text_encoder_lora_scale,
)
md_prompt_embeds_list.append(torch.cat([md_negative_prompt_embeds, md_prompt_embeds], dim=0).to(device))
md_add_text_embeds_list.append(torch.cat([md_negative_pooled_prompt_embeds, md_pooled_prompt_embeds], dim=0).to(device))
del md_negative_prompt_embeds, md_negative_pooled_prompt_embeds
if use_md_prompt:
random_jitter = True
views = [(h_start*4, h_end*4, w_start*4, w_end*4) for h_start, h_end, w_start, w_end in views_attention[current_scale_num]]
else:
random_jitter = True
views = self.get_views(current_height, current_width, stride=stride, window_size=self.unet.config.sample_size, random_jitter=random_jitter)
views_batch = [views[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
if use_md_prompt:
views_prompt_embeds_input = [md_prompt_embeds_list[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
views_add_text_embeds_input = [md_add_text_embeds_list[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
if random_jitter:
jitter_range = int((self.unet.config.sample_size - stride) // 4)
latents_ = F.pad(latents, (jitter_range, jitter_range, jitter_range, jitter_range), 'constant', 0)
else:
latents_ = latents
count_local = torch.zeros_like(latents_)
value_local = torch.zeros_like(latents_)
for j, batch_view in enumerate(views_batch):
vb_size = len(batch_view)
latents_for_view = torch.cat(
[latents_[:, :, h_start:h_end, w_start:w_end] for h_start, h_end, w_start, w_end in batch_view]
)
latent_model_input = latents_for_view
latent_model_input = (latent_model_input.repeat_interleave(2, dim=0)
if do_classifier_free_guidance
else latent_model_input)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
add_time_ids_input = []
for h_start, h_end, w_start, w_end in batch_view:
add_time_ids_ = add_time_ids.clone()
add_time_ids_[:, 2] = h_start * self.vae_scale_factor
add_time_ids_[:, 3] = w_start * self.vae_scale_factor
add_time_ids_input.append(add_time_ids_)
add_time_ids_input = torch.cat(add_time_ids_input)
if not use_md_prompt:
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size)
add_text_embeds_input = torch.cat([add_text_embeds] * vb_size)
added_cond_kwargs = {"text_embeds": add_text_embeds_input, "time_ids": add_time_ids_input}
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds_input,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
else:
md_prompt_embeds_input = torch.cat(views_prompt_embeds_input[j])
md_add_text_embeds_input = torch.cat(views_add_text_embeds_input[j])
md_added_cond_kwargs = {"text_embeds": md_add_text_embeds_input, "time_ids": add_time_ids_input}
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=md_prompt_embeds_input,
added_cond_kwargs=md_added_cond_kwargs,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2]
noise_pred = noise_pred_uncond + multi_guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
self.scheduler._init_step_index(t)
latents_denoised_batch = self.scheduler.step(noise_pred, t, latents_for_view, **extra_step_kwargs, return_dict=False)[0]
for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip(latents_denoised_batch.chunk(vb_size), batch_view):
value_local[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised
count_local[:, :, h_start:h_end, w_start:w_end] += 1
if random_jitter:
value_local = value_local[:, :, jitter_range:jitter_range + current_height // self.vae_scale_factor, jitter_range:jitter_range + current_width // self.vae_scale_factor]
count_local = count_local[:, :, jitter_range:jitter_range + current_height // self.vae_scale_factor, jitter_range:jitter_range + current_width // self.vae_scale_factor]
noise_index = i + 1 if i != (len(timesteps) - 1) else i
value_local = torch.where(count_local == 0, noise_latents[noise_index], value_local)
count_local = torch.where(count_local == 0, torch.ones_like(count_local), count_local)
if use_dilated_sampling:
c2 = cosine_factor ** cosine_scale_2
value += value_local / count_local * (1 - c2)
count += torch.ones_like(value_local) * (1 - c2)
else:
value += value_local / count_local
count += torch.ones_like(value_local)
if use_dilated_sampling:
views = [[h, w] for h in range(current_scale_num) for w in range(current_scale_num)]
views_batch = [views[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
h_pad = (current_scale_num - (latents.size(2) % current_scale_num)) % current_scale_num
w_pad = (current_scale_num - (latents.size(3) % current_scale_num)) % current_scale_num
latents_ = F.pad(latents, (w_pad, 0, h_pad, 0), 'constant', 0)
count_global = torch.zeros_like(latents_)
value_global = torch.zeros_like(latents_)
if use_guassian:
c3 = 0.99 * cosine_factor ** cosine_scale_3 + 1e-2
std_, mean_ = latents_.std(), latents_.mean()
latents_gaussian = gaussian_filter(latents_, kernel_size=(2*current_scale_num-1), sigma=sigma*c3)
latents_gaussian = (latents_gaussian - latents_gaussian.mean()) / latents_gaussian.std() * std_ + mean_
else:
latents_gaussian = latents_
for j, batch_view in enumerate(views_batch):
latents_for_view = torch.cat(
[latents_[:, :, h::current_scale_num, w::current_scale_num] for h, w in batch_view]
)
latents_for_view_gaussian = torch.cat(
[latents_gaussian[:, :, h::current_scale_num, w::current_scale_num] for h, w in batch_view]
)
if shuffle:
shape = latents_for_view.shape
# μμ : range(...) κ΄νΈ μΆκ°
shuffle_index = torch.stack([torch.randperm(shape[0]) for _ in range(latents_for_view.reshape(-1).shape[0]//shape[0])])
shuffle_index = shuffle_index.view(shape[1], shape[2], shape[3], shape[0])
original_index = torch.zeros_like(shuffle_index).scatter_(3, shuffle_index, torch.arange(shape[0]).repeat(shape[1], shape[2], shape[3], 1))
shuffle_index = shuffle_index.permute(3, 0, 1, 2).to(device)
original_index = original_index.permute(3, 0, 1, 2).to(device)
latents_for_view_gaussian = latents_for_view_gaussian.gather(0, shuffle_index)
vb_size = latents_for_view.size(0)
latent_model_input = latents_for_view_gaussian
latent_model_input = (latent_model_input.repeat_interleave(2, dim=0)
if do_classifier_free_guidance
else latent_model_input)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size)
add_text_embeds_input = torch.cat([add_text_embeds] * vb_size)
add_time_ids_input = torch.cat([add_time_ids] * vb_size)
added_cond_kwargs = {"text_embeds": add_text_embeds_input, "time_ids": add_time_ids_input}
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds_input,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2]
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
if shuffle:
noise_pred = noise_pred.gather(0, original_index)
self.scheduler._init_step_index(t)
latents_denoised_batch = self.scheduler.step(noise_pred, t, latents_for_view, **extra_step_kwargs, return_dict=False)[0]
for latents_view_denoised, (h, w) in zip(latents_denoised_batch.chunk(vb_size), batch_view):
value_global[:, :, h::current_scale_num, w::current_scale_num] += latents_view_denoised
count_global[:, :, h::current_scale_num, w::current_scale_num] += 1
value_global = value_global[:, :, h_pad:, w_pad:]
if use_multidiffusion:
c2 = cosine_factor ** cosine_scale_2
value += value_global * c2
count += torch.ones_like(value_global) * c2
else:
value += value_global
count += torch.ones_like(value_global)
latents = torch.where(count > 0, value / count, value)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
latents = (latents - latents.mean()) / latents.std() * anchor_std + anchor_mean
if self.lowvram:
latents = latents.cpu()
torch.cuda.empty_cache()
if not output_type == "latent":
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if self.lowvram:
needs_upcasting = False
self.unet.cpu()
self.vae.to(device)
if needs_upcasting:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
print("### Phase {} Decoding ###".format(current_scale_num))
if current_height > 2048 or current_width > 2048:
self.enable_vae_tiling()
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
else:
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
image[0].save(f'{result_path}/AccDiffusion_{current_scale_num}.png')
output_images.append(image[0])
if needs_upcasting:
self.vae.to(dtype=torch.float16)
else:
image = latents
self.maybe_free_model_hooks()
return output_images
if __name__ == "__main__":
parser = argparse.ArgumentParser()
### AccDiffusion PARAMETERS ###
parser.add_argument('--model_ckpt', default='stabilityai/stable-diffusion-xl-base-1.0')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--prompt', default="Astronaut on Mars During sunset.")
parser.add_argument('--negative_prompt', default="blurry, ugly, duplicate, poorly drawn, deformed, mosaic")
parser.add_argument('--cosine_scale_1', default=3, type=float, help="cosine scale 1")
parser.add_argument('--cosine_scale_2', default=1, type=float, help="cosine scale 2")
parser.add_argument('--cosine_scale_3', default=1, type=float, help="cosine scale 3")
parser.add_argument('--sigma', default=0.8, type=float, help="sigma")
parser.add_argument('--multi_decoder', default=True, type=bool, help="multi decoder or not")
parser.add_argument('--num_inference_steps', default=50, type=int, help="num inference steps")
parser.add_argument('--resolution', default='1024,1024', help="target resolution")
parser.add_argument('--use_multidiffusion', default=False, action='store_true', help="use multidiffusion or not")
parser.add_argument('--use_guassian', default=False, action='store_true', help="use guassian or not")
parser.add_argument('--use_dilated_sampling', default=True, action='store_true', help="use dilated sampling or not")
parser.add_argument('--use_progressive_upscaling', default=False, action='store_true', help="use progressive upscaling or not")
parser.add_argument('--shuffle', default=False, action='store_true', help="shuffle or not")
parser.add_argument('--use_skip_residual', default=False, action='store_true', help="use skip_residual or not")
parser.add_argument('--save_attention_map', default=False, action='store_true', help="save attention map or not")
parser.add_argument('--multi_guidance_scale', default=7.5, type=float, help="multi guidance scale")
parser.add_argument('--upscale_mode', default="bicubic_latent", help="bicubic_image or bicubic_latent ")
parser.add_argument('--use_md_prompt', default=False, action='store_true', help="use md prompt or not")
parser.add_argument('--view_batch_size', default=16, type=int, help="view_batch_size")
parser.add_argument('--stride', default=64, type=int, help="stride")
parser.add_argument('--c', default=0.3, type=float, help="threshold")
## others ##
parser.add_argument('--debug', default=False, action='store_true')
parser.add_argument('--experiment_name', default="AccDiffusion")
args = parser.parse_args()
pipe = AccDiffusionSDXLPipeline.from_pretrained(args.model_ckpt, torch_dtype=torch.float16).to("cuda")
@spaces.GPU(duration=200)
def infer(prompt, resolution, num_inference_steps, guidance_scale, seed, use_multidiffusion, use_skip_residual, use_dilated_sampling, use_progressive_upscaling, shuffle, use_md_prompt, progress=gr.Progress(track_tqdm=True)):
set_seed(seed)
width, height = list(map(int, resolution.split(',')))
cross_attention_kwargs = {"edit_type": "visualize",
"n_self_replace": 0.4,
"n_cross_replace": {"default_": 1.0, "confetti": 0.8},
}
generator = torch.Generator(device='cuda').manual_seed(seed)
print(f"Prompt: {prompt}")
md5_hash = hashlib.md5(prompt.encode()).hexdigest()
result_path = f"./output/{args.experiment_name}/{md5_hash}/{width}_{height}_{seed}/"
images = pipe(
prompt,
negative_prompt=args.negative_prompt,
generator=generator,
width=width,
height=height,
view_batch_size=args.view_batch_size,
stride=args.stride,
cross_attention_kwargs=cross_attention_kwargs,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
multi_guidance_scale=args.multi_guidance_scale,
cosine_scale_1=args.cosine_scale_1,
cosine_scale_2=args.cosine_scale_2,
cosine_scale_3=args.cosine_scale_3,
sigma=args.sigma, use_guassian=args.use_guassian,
multi_decoder=args.multi_decoder,
upscale_mode=args.upscale_mode,
use_multidiffusion=use_multidiffusion,
use_skip_residual=use_skip_residual,
use_progressive_upscaling=use_progressive_upscaling,
use_dilated_sampling=use_dilated_sampling,
shuffle=shuffle,
result_path=result_path,
debug=args.debug, save_attention_map=args.save_attention_map, use_md_prompt=use_md_prompt, c=args.c
)
print(images)
return images
MAX_SEED = np.iinfo(np.int32).max
css = """
body {
background: linear-gradient(135deg, #2c3e50, #4ca1af);
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
color: #ffffff;
}
#col-container {
margin: 20px auto;
padding: 20px;
max-width: 900px;
background-color: rgba(0, 0, 0, 0.5);
border-radius: 12px;
box-shadow: 0 4px 12px rgba(0,0,0,0.5);
}
h1, h2 {
text-align: center;
margin-bottom: 10px;
}
footer {
visibility: hidden;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("<h1>AccDiffusion: Advanced AI Art Generator</h1>")
gr.Markdown(
"μμ±ν μ΄λ―Έμ§λ₯Ό μν μ°½μμ μΈ ν둬ννΈλ₯Ό μ
λ ₯νμΈμ. μ΄ λͺ¨λΈμ μ΅μ AccDiffusion κΈ°λ²μ μ μ©νμ¬ λ€μν μ€νμΌκ³Ό ν΄μλμ μμ μνμ λ§λ€μ΄λ
λλ€."
)
with gr.Row():
prompt = gr.Textbox(label="Prompt", placeholder="μ: A surreal landscape with floating islands and vibrant colors.", lines=2, scale=4)
submit_btn = gr.Button("Generate", scale=1)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
resolution = gr.Radio(
label="Resolution",
choices = [
"1024,1024", "2048,2048", "2048,1024", "1536,3072", "3072,3072", "4096,4096", "4096,2048"
],
value = "1024,1024",
interactive=True
)
with gr.Column():
num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=50, step=1, value=30, info="Number of denoising steps")
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=510, step=0.1, value=7.5, info="Higher values increase adherence to the prompt")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, info="Set a seed for reproducibility")
with gr.Row():
use_multidiffusion = gr.Checkbox(label="Use MultiDiffusion", value=True)
use_skip_residual = gr.Checkbox(label="Use Skip Residual", value=True)
use_dilated_sampling = gr.Checkbox(label="Use Dilated Sampling", value=True)
with gr.Row():
use_progressive_upscaling = gr.Checkbox(label="Use Progressive Upscaling", value=False)
shuffle = gr.Checkbox(label="Shuffle", value=False)
use_md_prompt = gr.Checkbox(label="Use MD Prompt", value=False)
output_images = gr.Gallery(label="Output Images", format="png")
gr.Markdown("### Example Prompts")
gr.Examples(
examples = [
["A surreal landscape with floating islands and vibrant colors."],
["Cyberpunk cityscape at night with neon lights and futuristic architecture."],
["A majestic dragon soaring over a medieval castle amidst stormy skies."],
["Futuristic robot exploring an alien planet with mysterious flora."],
["Abstract geometric patterns in vivid, pulsating colors."],
["A mystical forest illuminated by bioluminescent plants under a starry sky."]
],
inputs = [prompt],
label="Click an example to populate the prompt box."
)
submit_btn.click(
fn = infer,
inputs = [prompt, resolution, num_inference_steps, guidance_scale, seed,
use_multidiffusion, use_skip_residual, use_dilated_sampling, use_progressive_upscaling, shuffle, use_md_prompt],
outputs = [output_images],
show_api=False
)
demo.launch(show_api=False, show_error=True)
|