Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -113,7 +113,35 @@ class AccDiffusionSDXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoade
|
|
113 |
"""
|
114 |
Pipeline for text-to-image generation using Stable Diffusion XL.
|
115 |
|
116 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
"""
|
118 |
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
119 |
|
@@ -152,7 +180,469 @@ class AccDiffusionSDXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoade
|
|
152 |
else:
|
153 |
self.watermark = None
|
154 |
|
155 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
@torch.no_grad()
|
158 |
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
@@ -213,17 +703,554 @@ class AccDiffusionSDXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoade
|
|
213 |
seed: Optional[int] = None,
|
214 |
c : Optional[float] = 0.3,
|
215 |
):
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
###################################################### Phase Initialization ########################################################
|
224 |
-
# (중략) 실제 denoising 및 upscaling 부분
|
225 |
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
return output_images
|
228 |
|
229 |
|
@@ -260,36 +1287,8 @@ if __name__ == "__main__":
|
|
260 |
|
261 |
args = parser.parse_args()
|
262 |
|
263 |
-
# 파이프라인 불러오기 (필요한 모델 체크포인트 사용)
|
264 |
pipe = AccDiffusionSDXLPipeline.from_pretrained(args.model_ckpt, torch_dtype=torch.float16).to("cuda")
|
265 |
|
266 |
-
|
267 |
-
# ----------------------- GRADIO INTERFACE (개선된 UI) -----------------------
|
268 |
-
|
269 |
-
# 사용자 인터페이스에 적용할 CSS (배경, 폰트, 카드 스타일 등)
|
270 |
-
css = """
|
271 |
-
body {
|
272 |
-
background: linear-gradient(135deg, #2c3e50, #4ca1af);
|
273 |
-
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
274 |
-
color: #ffffff;
|
275 |
-
}
|
276 |
-
#col-container {
|
277 |
-
margin: 20px auto;
|
278 |
-
padding: 20px;
|
279 |
-
max-width: 900px;
|
280 |
-
background-color: rgba(0, 0, 0, 0.5);
|
281 |
-
border-radius: 12px;
|
282 |
-
box-shadow: 0 4px 12px rgba(0,0,0,0.5);
|
283 |
-
}
|
284 |
-
h1, h2 {
|
285 |
-
text-align: center;
|
286 |
-
margin-bottom: 10px;
|
287 |
-
}
|
288 |
-
footer {
|
289 |
-
visibility: hidden;
|
290 |
-
}
|
291 |
-
"""
|
292 |
-
|
293 |
@spaces.GPU(duration=200)
|
294 |
def infer(prompt, resolution, num_inference_steps, guidance_scale, seed, use_multidiffusion, use_skip_residual, use_dilated_sampling, use_progressive_upscaling, shuffle, use_md_prompt, progress=gr.Progress(track_tqdm=True)):
|
295 |
set_seed(seed)
|
@@ -319,8 +1318,7 @@ if __name__ == "__main__":
|
|
319 |
cosine_scale_1=args.cosine_scale_1,
|
320 |
cosine_scale_2=args.cosine_scale_2,
|
321 |
cosine_scale_3=args.cosine_scale_3,
|
322 |
-
sigma=args.sigma,
|
323 |
-
use_guassian=args.use_guassian,
|
324 |
multi_decoder=args.multi_decoder,
|
325 |
upscale_mode=args.upscale_mode,
|
326 |
use_multidiffusion=use_multidiffusion,
|
@@ -329,18 +1327,37 @@ if __name__ == "__main__":
|
|
329 |
use_dilated_sampling=use_dilated_sampling,
|
330 |
shuffle=shuffle,
|
331 |
result_path=result_path,
|
332 |
-
debug=args.debug,
|
333 |
-
save_attention_map=args.save_attention_map,
|
334 |
-
use_md_prompt=use_md_prompt,
|
335 |
-
c=args.c
|
336 |
)
|
337 |
print(images)
|
338 |
|
339 |
return images
|
340 |
-
|
341 |
-
|
342 |
MAX_SEED = np.iinfo(np.int32).max
|
343 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
with gr.Blocks(css=css) as demo:
|
345 |
with gr.Column(elem_id="col-container"):
|
346 |
gr.Markdown("<h1>AccDiffusion: Advanced AI Art Generator</h1>")
|
@@ -355,10 +1372,10 @@ if __name__ == "__main__":
|
|
355 |
with gr.Row():
|
356 |
resolution = gr.Radio(
|
357 |
label="Resolution",
|
358 |
-
choices=[
|
359 |
"1024,1024", "2048,2048", "2048,1024", "1536,3072", "3072,3072", "4096,4096", "4096,2048"
|
360 |
],
|
361 |
-
value="1024,1024",
|
362 |
interactive=True
|
363 |
)
|
364 |
with gr.Column():
|
@@ -377,7 +1394,7 @@ if __name__ == "__main__":
|
|
377 |
output_images = gr.Gallery(label="Output Images", format="png").style(grid=[2], height="auto")
|
378 |
gr.Markdown("### Example Prompts")
|
379 |
gr.Examples(
|
380 |
-
examples=[
|
381 |
["A surreal landscape with floating islands and vibrant colors."],
|
382 |
["Cyberpunk cityscape at night with neon lights and futuristic architecture."],
|
383 |
["A majestic dragon soaring over a medieval castle amidst stormy skies."],
|
@@ -385,14 +1402,14 @@ if __name__ == "__main__":
|
|
385 |
["Abstract geometric patterns in vivid, pulsating colors."],
|
386 |
["A mystical forest illuminated by bioluminescent plants under a starry sky."]
|
387 |
],
|
388 |
-
inputs=[prompt],
|
389 |
label="Click an example to populate the prompt box."
|
390 |
)
|
391 |
submit_btn.click(
|
392 |
-
fn=infer,
|
393 |
-
inputs=[prompt, resolution, num_inference_steps, guidance_scale, seed,
|
394 |
-
|
395 |
-
outputs=[output_images],
|
396 |
show_api=False
|
397 |
)
|
398 |
demo.launch(show_api=False, show_error=True)
|
|
|
113 |
"""
|
114 |
Pipeline for text-to-image generation using Stable Diffusion XL.
|
115 |
|
116 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
117 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
118 |
+
|
119 |
+
In addition the pipeline inherits the following loading methods:
|
120 |
+
- *LoRA*: [`StableDiffusionXLPipeline.load_lora_weights`]
|
121 |
+
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
122 |
+
|
123 |
+
as well as the following saving methods:
|
124 |
+
- *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`]
|
125 |
+
|
126 |
+
Args:
|
127 |
+
vae ([`AutoencoderKL`]):
|
128 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
129 |
+
text_encoder ([`CLIPTextModel`]):
|
130 |
+
Frozen text-encoder.
|
131 |
+
text_encoder_2 ([`CLIPTextModelWithProjection`]):
|
132 |
+
Second frozen text-encoder.
|
133 |
+
tokenizer (`CLIPTokenizer`):
|
134 |
+
Tokenizer.
|
135 |
+
tokenizer_2 (`CLIPTokenizer`):
|
136 |
+
Second Tokenizer.
|
137 |
+
unet ([`UNet2DConditionModel`]):
|
138 |
+
Conditional U-Net architecture.
|
139 |
+
scheduler ([`SchedulerMixin`]):
|
140 |
+
A scheduler to be used in combination with `unet`.
|
141 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
142 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0.
|
143 |
+
add_watermarker (`bool`, *optional*):
|
144 |
+
Whether to use the invisible watermark library.
|
145 |
"""
|
146 |
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
147 |
|
|
|
180 |
else:
|
181 |
self.watermark = None
|
182 |
|
183 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
184 |
+
def enable_vae_slicing(self):
|
185 |
+
self.vae.enable_slicing()
|
186 |
+
|
187 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
188 |
+
def disable_vae_slicing(self):
|
189 |
+
self.vae.disable_slicing()
|
190 |
+
|
191 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
192 |
+
def enable_vae_tiling(self):
|
193 |
+
self.vae.enable_tiling()
|
194 |
+
|
195 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
196 |
+
def disable_vae_tiling(self):
|
197 |
+
self.vae.disable_tiling()
|
198 |
+
|
199 |
+
def encode_prompt(
|
200 |
+
self,
|
201 |
+
prompt: str,
|
202 |
+
prompt_2: Optional[str] = None,
|
203 |
+
device: Optional[torch.device] = None,
|
204 |
+
num_images_per_prompt: int = 1,
|
205 |
+
do_classifier_free_guidance: bool = True,
|
206 |
+
negative_prompt: Optional[str] = None,
|
207 |
+
negative_prompt_2: Optional[str] = None,
|
208 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
209 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
210 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
211 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
212 |
+
lora_scale: Optional[float] = None,
|
213 |
+
):
|
214 |
+
device = device or self._execution_device
|
215 |
+
|
216 |
+
# set lora scale so that monkey patched LoRA function of text encoder can correctly access it
|
217 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
218 |
+
self._lora_scale = lora_scale
|
219 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
220 |
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
221 |
+
|
222 |
+
if prompt is not None and isinstance(prompt, str):
|
223 |
+
batch_size = 1
|
224 |
+
elif prompt is not None and isinstance(prompt, list):
|
225 |
+
batch_size = len(prompt)
|
226 |
+
else:
|
227 |
+
batch_size = prompt_embeds.shape[0]
|
228 |
+
|
229 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
230 |
+
text_encoders = (
|
231 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
232 |
+
)
|
233 |
+
|
234 |
+
if prompt_embeds is None:
|
235 |
+
prompt_2 = prompt_2 or prompt
|
236 |
+
prompt_embeds_list = []
|
237 |
+
prompts = [prompt, prompt_2]
|
238 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
239 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
240 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
241 |
+
|
242 |
+
text_inputs = tokenizer(
|
243 |
+
prompt,
|
244 |
+
padding="max_length",
|
245 |
+
max_length=tokenizer.model_max_length,
|
246 |
+
truncation=True,
|
247 |
+
return_tensors="pt",
|
248 |
+
)
|
249 |
+
|
250 |
+
text_input_ids = text_inputs.input_ids
|
251 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
252 |
+
|
253 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
254 |
+
text_input_ids, untruncated_ids
|
255 |
+
):
|
256 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
257 |
+
logger.warning(
|
258 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
259 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
260 |
+
)
|
261 |
+
|
262 |
+
prompt_embeds = text_encoder(
|
263 |
+
text_input_ids.to(device),
|
264 |
+
output_hidden_states=True,
|
265 |
+
)
|
266 |
+
|
267 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
268 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
269 |
+
|
270 |
+
prompt_embeds_list.append(prompt_embeds)
|
271 |
+
|
272 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
273 |
+
|
274 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
275 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
276 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
277 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
278 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
279 |
+
negative_prompt = negative_prompt or ""
|
280 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
281 |
+
|
282 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
283 |
+
raise TypeError(
|
284 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
285 |
+
f" {type(prompt)}."
|
286 |
+
)
|
287 |
+
elif isinstance(negative_prompt, str):
|
288 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
289 |
+
elif batch_size != len(negative_prompt):
|
290 |
+
raise ValueError(
|
291 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
292 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
293 |
+
" the batch size of `prompt`."
|
294 |
+
)
|
295 |
+
else:
|
296 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
297 |
+
|
298 |
+
negative_prompt_embeds_list = []
|
299 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
300 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
301 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
302 |
+
|
303 |
+
max_length = prompt_embeds.shape[1]
|
304 |
+
uncond_input = tokenizer(
|
305 |
+
negative_prompt,
|
306 |
+
padding="max_length",
|
307 |
+
max_length=max_length,
|
308 |
+
truncation=True,
|
309 |
+
return_tensors="pt",
|
310 |
+
)
|
311 |
+
|
312 |
+
negative_prompt_embeds = text_encoder(
|
313 |
+
uncond_input.input_ids.to(device),
|
314 |
+
output_hidden_states=True,
|
315 |
+
)
|
316 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
317 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
318 |
+
|
319 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
320 |
+
|
321 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
322 |
+
|
323 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
324 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
325 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
326 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
327 |
+
|
328 |
+
if do_classifier_free_guidance:
|
329 |
+
seq_len = negative_prompt_embeds.shape[1]
|
330 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
331 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
332 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
333 |
+
|
334 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
335 |
+
bs_embed * num_images_per_prompt, -1
|
336 |
+
)
|
337 |
+
if do_classifier_free_guidance:
|
338 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
339 |
+
bs_embed * num_images_per_prompt, -1
|
340 |
+
)
|
341 |
+
|
342 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
343 |
+
|
344 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
345 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
346 |
+
extra_step_kwargs = {}
|
347 |
+
if accepts_eta:
|
348 |
+
extra_step_kwargs["eta"] = eta
|
349 |
+
|
350 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
351 |
+
if accepts_generator:
|
352 |
+
extra_step_kwargs["generator"] = generator
|
353 |
+
return extra_step_kwargs
|
354 |
+
|
355 |
+
def check_inputs(
|
356 |
+
self,
|
357 |
+
prompt,
|
358 |
+
prompt_2,
|
359 |
+
height,
|
360 |
+
width,
|
361 |
+
callback_steps,
|
362 |
+
negative_prompt=None,
|
363 |
+
negative_prompt_2=None,
|
364 |
+
prompt_embeds=None,
|
365 |
+
negative_prompt_embeds=None,
|
366 |
+
pooled_prompt_embeds=None,
|
367 |
+
negative_pooled_prompt_embeds=None,
|
368 |
+
num_images_per_prompt=None,
|
369 |
+
):
|
370 |
+
if height % 8 != 0 or width % 8 != 0:
|
371 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
372 |
+
|
373 |
+
if (callback_steps is None) or (
|
374 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
375 |
+
):
|
376 |
+
raise ValueError(
|
377 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}."
|
378 |
+
)
|
379 |
+
|
380 |
+
if prompt is not None and prompt_embeds is not None:
|
381 |
+
raise ValueError(
|
382 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two."
|
383 |
+
)
|
384 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
385 |
+
raise ValueError(
|
386 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two."
|
387 |
+
)
|
388 |
+
elif prompt is None and prompt_embeds is None:
|
389 |
+
raise ValueError(
|
390 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
391 |
+
)
|
392 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
393 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
394 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
395 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
396 |
+
|
397 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
398 |
+
raise ValueError(
|
399 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
400 |
+
)
|
401 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
402 |
+
raise ValueError(
|
403 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
404 |
+
)
|
405 |
+
|
406 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
407 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
408 |
+
raise ValueError(
|
409 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}."
|
410 |
+
)
|
411 |
+
|
412 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
413 |
+
raise ValueError(
|
414 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
415 |
+
)
|
416 |
+
|
417 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
418 |
+
raise ValueError(
|
419 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
420 |
+
)
|
421 |
+
|
422 |
+
if max(height, width) % 1024 != 0:
|
423 |
+
raise ValueError(f"the larger one of `height` and `width` has to be divisible by 1024 but are {height} and {width}.")
|
424 |
+
|
425 |
+
if num_images_per_prompt != 1:
|
426 |
+
warnings.warn("num_images_per_prompt != 1 is not supported by AccDiffusion and will be ignored.")
|
427 |
+
num_images_per_prompt = 1
|
428 |
+
|
429 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
430 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
431 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
432 |
+
raise ValueError(
|
433 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators."
|
434 |
+
)
|
435 |
+
|
436 |
+
if latents is None:
|
437 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
438 |
+
else:
|
439 |
+
latents = latents.to(device)
|
440 |
+
|
441 |
+
latents = latents * self.scheduler.init_noise_sigma
|
442 |
+
return latents
|
443 |
+
|
444 |
+
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
|
445 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
446 |
+
|
447 |
+
passed_add_embed_dim = (
|
448 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
|
449 |
+
)
|
450 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
451 |
+
|
452 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
453 |
+
raise ValueError(
|
454 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. \
|
455 |
+
The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
456 |
+
)
|
457 |
+
|
458 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
459 |
+
return add_time_ids
|
460 |
+
|
461 |
+
def get_views(self, height, width, window_size=128, stride=64, random_jitter=False):
|
462 |
+
height //= self.vae_scale_factor
|
463 |
+
width //= self.vae_scale_factor
|
464 |
+
num_blocks_height = int((height - window_size) / stride - 1e-6) + 2 if height > window_size else 1
|
465 |
+
num_blocks_width = int((width - window_size) / stride - 1e-6) + 2 if width > window_size else 1
|
466 |
+
total_num_blocks = int(num_blocks_height * num_blocks_width)
|
467 |
+
views = []
|
468 |
+
for i in range(total_num_blocks):
|
469 |
+
h_start = int((i // num_blocks_width) * stride)
|
470 |
+
h_end = h_start + window_size
|
471 |
+
w_start = int((i % num_blocks_width) * stride)
|
472 |
+
w_end = w_start + window_size
|
473 |
+
|
474 |
+
if h_end > height:
|
475 |
+
h_start = int(h_start + height - h_end)
|
476 |
+
h_end = int(height)
|
477 |
+
if w_end > width:
|
478 |
+
w_start = int(w_start + width - w_end)
|
479 |
+
w_end = int(width)
|
480 |
+
if h_start < 0:
|
481 |
+
h_end = int(h_end - h_start)
|
482 |
+
h_start = 0
|
483 |
+
if w_start < 0:
|
484 |
+
w_end = int(w_end - w_start)
|
485 |
+
w_start = 0
|
486 |
+
|
487 |
+
if random_jitter:
|
488 |
+
jitter_range = (window_size - stride) // 4
|
489 |
+
w_jitter = 0
|
490 |
+
h_jitter = 0
|
491 |
+
if (w_start != 0) and (w_end != width):
|
492 |
+
w_jitter = random.randint(-jitter_range, jitter_range)
|
493 |
+
elif (w_start == 0) and (w_end != width):
|
494 |
+
w_jitter = random.randint(-jitter_range, 0)
|
495 |
+
elif (w_start != 0) and (w_end == width):
|
496 |
+
w_jitter = random.randint(0, jitter_range)
|
497 |
+
|
498 |
+
if (h_start != 0) and (h_end != height):
|
499 |
+
h_jitter = random.randint(-jitter_range, jitter_range)
|
500 |
+
elif (h_start == 0) and (h_end != height):
|
501 |
+
h_jitter = random.randint(-jitter_range, 0)
|
502 |
+
elif (h_start != 0) and (h_end == height):
|
503 |
+
h_jitter = random.randint(0, jitter_range)
|
504 |
+
h_start = h_start + h_jitter + jitter_range
|
505 |
+
h_end = h_end + h_jitter + jitter_range
|
506 |
+
w_start = w_start + w_jitter + jitter_range
|
507 |
+
w_end = w_end + w_jitter + jitter_range
|
508 |
+
|
509 |
+
views.append((h_start, h_end, w_start, w_end))
|
510 |
+
return views
|
511 |
+
|
512 |
+
def upcast_vae(self):
|
513 |
+
dtype = self.vae.dtype
|
514 |
+
self.vae.to(dtype=torch.float32)
|
515 |
+
use_torch_2_0_or_xformers = isinstance(
|
516 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
517 |
+
(
|
518 |
+
AttnProcessor2_0,
|
519 |
+
XFormersAttnProcessor,
|
520 |
+
LoRAXFormersAttnProcessor,
|
521 |
+
LoRAAttnProcessor2_0,
|
522 |
+
),
|
523 |
+
)
|
524 |
+
if use_torch_2_0_or_xformers:
|
525 |
+
self.vae.post_quant_conv.to(dtype)
|
526 |
+
self.vae.decoder.conv_in.to(dtype)
|
527 |
+
self.vae.decoder.mid_block.to(dtype)
|
528 |
+
|
529 |
+
def register_attention_control(self, controller):
|
530 |
+
attn_procs = {}
|
531 |
+
cross_att_count = 0
|
532 |
+
ori_attn_processors = self.unet.attn_processors
|
533 |
+
for name in self.unet.attn_processors.keys():
|
534 |
+
if name.startswith("mid_block"):
|
535 |
+
place_in_unet = "mid"
|
536 |
+
elif name.startswith("up_blocks"):
|
537 |
+
place_in_unet = "up"
|
538 |
+
elif name.startswith("down_blocks"):
|
539 |
+
place_in_unet = "down"
|
540 |
+
else:
|
541 |
+
continue
|
542 |
+
cross_att_count += 1
|
543 |
+
attn_procs[name] = P2PCrossAttnProcessor(controller=controller, place_in_unet=place_in_unet)
|
544 |
+
|
545 |
+
self.unet.set_attn_processor(attn_procs)
|
546 |
+
controller.num_att_layers = cross_att_count
|
547 |
+
return ori_attn_processors
|
548 |
+
|
549 |
+
def recover_attention_control(self, ori_attn_processors):
|
550 |
+
self.unet.set_attn_processor(ori_attn_processors)
|
551 |
+
|
552 |
+
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
|
553 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
554 |
+
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
|
555 |
+
else:
|
556 |
+
raise ImportError("Offloading requires `accelerate v0.17.0` or higher.")
|
557 |
+
|
558 |
+
is_model_cpu_offload = False
|
559 |
+
is_sequential_cpu_offload = False
|
560 |
+
recursive = False
|
561 |
+
for _, component in self.components.items():
|
562 |
+
if isinstance(component, torch.nn.Module):
|
563 |
+
if hasattr(component, "_hf_hook"):
|
564 |
+
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
|
565 |
+
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
|
566 |
+
logger.info(
|
567 |
+
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
|
568 |
+
)
|
569 |
+
recursive = is_sequential_cpu_offload
|
570 |
+
remove_hook_from_module(component, recurse=recursive)
|
571 |
+
state_dict, network_alphas = self.lora_state_dict(
|
572 |
+
pretrained_model_name_or_path_or_dict,
|
573 |
+
unet_config=self.unet.config,
|
574 |
+
**kwargs,
|
575 |
+
)
|
576 |
+
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
|
577 |
+
|
578 |
+
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
|
579 |
+
if len(text_encoder_state_dict) > 0:
|
580 |
+
self.load_lora_into_text_encoder(
|
581 |
+
text_encoder_state_dict,
|
582 |
+
network_alphas=network_alphas,
|
583 |
+
text_encoder=self.text_encoder,
|
584 |
+
prefix="text_encoder",
|
585 |
+
lora_scale=self.lora_scale,
|
586 |
+
)
|
587 |
+
|
588 |
+
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
|
589 |
+
if len(text_encoder_2_state_dict) > 0:
|
590 |
+
self.load_lora_into_text_encoder(
|
591 |
+
text_encoder_2_state_dict,
|
592 |
+
network_alphas=network_alphas,
|
593 |
+
text_encoder=self.text_encoder_2,
|
594 |
+
prefix="text_encoder_2",
|
595 |
+
lora_scale=self.lora_scale,
|
596 |
+
)
|
597 |
+
|
598 |
+
if is_model_cpu_offload:
|
599 |
+
self.enable_model_cpu_offload()
|
600 |
+
elif is_sequential_cpu_offload:
|
601 |
+
self.enable_sequential_cpu_offload()
|
602 |
+
|
603 |
+
@classmethod
|
604 |
+
def save_lora_weights(
|
605 |
+
self,
|
606 |
+
save_directory: Union[str, os.PathLike],
|
607 |
+
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
608 |
+
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
609 |
+
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
610 |
+
is_main_process: bool = True,
|
611 |
+
weight_name: str = None,
|
612 |
+
save_function: Callable = None,
|
613 |
+
safe_serialization: bool = True,
|
614 |
+
):
|
615 |
+
state_dict = {}
|
616 |
+
|
617 |
+
def pack_weights(layers, prefix):
|
618 |
+
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
|
619 |
+
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
|
620 |
+
return layers_state_dict
|
621 |
+
|
622 |
+
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
|
623 |
+
raise ValueError(
|
624 |
+
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
|
625 |
+
)
|
626 |
+
|
627 |
+
if unet_lora_layers:
|
628 |
+
state_dict.update(pack_weights(unet_lora_layers, "unet"))
|
629 |
+
|
630 |
+
if text_encoder_lora_layers and text_encoder_2_lora_layers:
|
631 |
+
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
|
632 |
+
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
|
633 |
+
|
634 |
+
self.write_lora_layers(
|
635 |
+
state_dict=state_dict,
|
636 |
+
save_directory=save_directory,
|
637 |
+
is_main_process=is_main_process,
|
638 |
+
weight_name=weight_name,
|
639 |
+
save_function=save_function,
|
640 |
+
safe_serialization=safe_serialization,
|
641 |
+
)
|
642 |
+
|
643 |
+
def _remove_text_encoder_monkey_patch(self):
|
644 |
+
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
|
645 |
+
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)
|
646 |
|
647 |
@torch.no_grad()
|
648 |
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
|
703 |
seed: Optional[int] = None,
|
704 |
c : Optional[float] = 0.3,
|
705 |
):
|
706 |
+
if debug:
|
707 |
+
num_inference_steps = 1
|
708 |
+
|
709 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
710 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
711 |
+
|
712 |
+
x1_size = self.default_sample_size * self.vae_scale_factor
|
713 |
+
|
714 |
+
height_scale = height / x1_size
|
715 |
+
width_scale = width / x1_size
|
716 |
+
scale_num = int(max(height_scale, width_scale))
|
717 |
+
aspect_ratio = min(height_scale, width_scale) / max(height_scale, width_scale)
|
718 |
+
|
719 |
+
original_size = original_size or (height, width)
|
720 |
+
target_size = target_size or (height, width)
|
721 |
+
|
722 |
+
if attn_res is None:
|
723 |
+
attn_res = int(np.ceil(self.default_sample_size * self.vae_scale_factor / 32)), int(np.ceil(self.default_sample_size * self.vae_scale_factor / 32))
|
724 |
+
self.attn_res = attn_res
|
725 |
+
|
726 |
+
if lowvram:
|
727 |
+
attention_map_device = torch.device("cpu")
|
728 |
+
else:
|
729 |
+
attention_map_device = self.device
|
730 |
+
|
731 |
+
self.controller = create_controller(
|
732 |
+
prompt, cross_attention_kwargs, num_inference_steps, tokenizer=self.tokenizer, device=attention_map_device, attn_res=self.attn_res
|
733 |
+
)
|
734 |
+
|
735 |
+
if save_attention_map or use_md_prompt:
|
736 |
+
ori_attn_processors = self.register_attention_control(self.controller)
|
737 |
+
|
738 |
+
self.check_inputs(
|
739 |
+
prompt,
|
740 |
+
prompt_2,
|
741 |
+
height,
|
742 |
+
width,
|
743 |
+
callback_steps,
|
744 |
+
negative_prompt,
|
745 |
+
negative_prompt_2,
|
746 |
+
prompt_embeds,
|
747 |
+
negative_prompt_embeds,
|
748 |
+
pooled_prompt_embeds,
|
749 |
+
negative_pooled_prompt_embeds,
|
750 |
+
num_images_per_prompt,
|
751 |
+
)
|
752 |
+
|
753 |
+
if prompt is not None and isinstance(prompt, str):
|
754 |
+
batch_size = 1
|
755 |
+
elif prompt is not None and isinstance(prompt, list):
|
756 |
+
batch_size = len(prompt)
|
757 |
+
else:
|
758 |
+
batch_size = prompt_embeds.shape[0]
|
759 |
+
|
760 |
+
device = self._execution_device
|
761 |
+
self.lowvram = lowvram
|
762 |
+
if self.lowvram:
|
763 |
+
self.vae.cpu()
|
764 |
+
self.unet.cpu()
|
765 |
+
self.text_encoder.to(device)
|
766 |
+
self.text_encoder_2.to(device)
|
767 |
+
|
768 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
769 |
+
|
770 |
+
text_encoder_lora_scale = (
|
771 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
772 |
+
)
|
773 |
+
|
774 |
+
(
|
775 |
+
prompt_embeds,
|
776 |
+
negative_prompt_embeds,
|
777 |
+
pooled_prompt_embeds,
|
778 |
+
negative_pooled_prompt_embeds,
|
779 |
+
) = self.encode_prompt(
|
780 |
+
prompt=prompt,
|
781 |
+
prompt_2=prompt_2,
|
782 |
+
device=device,
|
783 |
+
num_images_per_prompt=num_images_per_prompt,
|
784 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
785 |
+
negative_prompt=negative_prompt,
|
786 |
+
negative_prompt_2=negative_prompt_2,
|
787 |
+
prompt_embeds=prompt_embeds,
|
788 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
789 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
790 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
791 |
+
lora_scale=text_encoder_lora_scale,
|
792 |
+
)
|
793 |
+
|
794 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
795 |
+
timesteps = self.scheduler.timesteps
|
796 |
+
|
797 |
+
num_channels_latents = self.unet.config.in_channels
|
798 |
+
latents = self.prepare_latents(
|
799 |
+
batch_size * num_images_per_prompt,
|
800 |
+
num_channels_latents,
|
801 |
+
height // scale_num,
|
802 |
+
width // scale_num,
|
803 |
+
prompt_embeds.dtype,
|
804 |
+
device,
|
805 |
+
generator,
|
806 |
+
latents,
|
807 |
+
)
|
808 |
+
|
809 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
810 |
+
|
811 |
+
add_text_embeds = pooled_prompt_embeds
|
812 |
+
|
813 |
+
add_time_ids = self._get_add_time_ids(
|
814 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
815 |
+
)
|
816 |
+
|
817 |
+
if negative_original_size is not None and negative_target_size is not None:
|
818 |
+
negative_add_time_ids = self._get_add_time_ids(
|
819 |
+
negative_original_size,
|
820 |
+
negative_crops_coords_top_left,
|
821 |
+
negative_target_size,
|
822 |
+
dtype=prompt_embeds.dtype,
|
823 |
+
)
|
824 |
+
else:
|
825 |
+
negative_add_time_ids = add_time_ids
|
826 |
|
827 |
+
if do_classifier_free_guidance:
|
828 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0).to(device)
|
829 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0).to(device)
|
830 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0).to(device).repeat(batch_size * num_images_per_prompt, 1)
|
831 |
+
|
832 |
+
del negative_prompt_embeds, negative_pooled_prompt_embeds, negative_add_time_ids
|
833 |
+
|
834 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
835 |
+
|
836 |
+
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
|
837 |
+
discrete_timestep_cutoff = int(
|
838 |
+
round(
|
839 |
+
self.scheduler.config.num_train_timesteps - (denoising_end * self.scheduler.config.num_train_timesteps)
|
840 |
+
)
|
841 |
+
)
|
842 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
843 |
+
timesteps = timesteps[:num_inference_steps]
|
844 |
+
|
845 |
+
output_images = []
|
846 |
+
|
847 |
###################################################### Phase Initialization ########################################################
|
|
|
848 |
|
849 |
+
if self.lowvram:
|
850 |
+
self.text_encoder.cpu()
|
851 |
+
self.text_encoder_2.cpu()
|
852 |
+
|
853 |
+
if image_lr == None:
|
854 |
+
print("### Phase 1 Denoising ###")
|
855 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
856 |
+
for i, t in enumerate(timesteps):
|
857 |
+
|
858 |
+
if self.lowvram:
|
859 |
+
self.vae.cpu()
|
860 |
+
self.unet.to(device)
|
861 |
+
|
862 |
+
latents_for_view = latents
|
863 |
+
|
864 |
+
latent_model_input = (
|
865 |
+
latents.repeat_interleave(2, dim=0)
|
866 |
+
if do_classifier_free_guidance
|
867 |
+
else latents
|
868 |
+
)
|
869 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
870 |
+
|
871 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
872 |
+
|
873 |
+
noise_pred = self.unet(
|
874 |
+
latent_model_input,
|
875 |
+
t,
|
876 |
+
encoder_hidden_states=prompt_embeds,
|
877 |
+
added_cond_kwargs=added_cond_kwargs,
|
878 |
+
return_dict=False,
|
879 |
+
)[0]
|
880 |
+
|
881 |
+
if do_classifier_free_guidance:
|
882 |
+
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2]
|
883 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
884 |
+
|
885 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
886 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
887 |
+
|
888 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
889 |
+
|
890 |
+
if t == 1 and use_md_prompt:
|
891 |
+
md_prompts, views_attention = get_multidiffusion_prompts(tokenizer=self.tokenizer, prompts=[prompt], threthod=c, attention_store=self.controller, height=height//scale_num, width=width//scale_num, from_where=["up","down"], random_jitter=True, scale_num=scale_num)
|
892 |
+
|
893 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
894 |
+
progress_bar.update()
|
895 |
+
if callback is not None and i % callback_steps == 0:
|
896 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
897 |
+
callback(step_idx, t, latents)
|
898 |
+
|
899 |
+
del latents_for_view, latent_model_input, noise_pred, noise_pred_text, noise_pred_uncond
|
900 |
+
if use_md_prompt or save_attention_map:
|
901 |
+
self.recover_attention_control(ori_attn_processors=ori_attn_processors)
|
902 |
+
del self.controller
|
903 |
+
torch.cuda.empty_cache()
|
904 |
+
else:
|
905 |
+
print("### Encoding Real Image ###")
|
906 |
+
latents = self.vae.encode(image_lr)
|
907 |
+
latents = latents.latent_dist.sample() * self.vae.config.scaling_factor
|
908 |
+
|
909 |
+
anchor_mean = latents.mean()
|
910 |
+
anchor_std = latents.std()
|
911 |
+
if self.lowvram:
|
912 |
+
latents = latents.cpu()
|
913 |
+
torch.cuda.empty_cache()
|
914 |
+
if not output_type == "latent":
|
915 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
916 |
+
|
917 |
+
if self.lowvram:
|
918 |
+
needs_upcasting = False
|
919 |
+
self.unet.cpu()
|
920 |
+
self.vae.to(device)
|
921 |
+
|
922 |
+
if needs_upcasting:
|
923 |
+
self.upcast_vae()
|
924 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
925 |
+
if self.lowvram and multi_decoder:
|
926 |
+
current_width_height = self.unet.config.sample_size * self.vae_scale_factor
|
927 |
+
image = self.tiled_decode(latents, current_width_height, current_width_height)
|
928 |
+
else:
|
929 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
930 |
+
if needs_upcasting:
|
931 |
+
self.vae.to(dtype=torch.float16)
|
932 |
+
|
933 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
934 |
+
if not os.path.exists(f'{result_path}'):
|
935 |
+
os.makedirs(f'{result_path}')
|
936 |
+
|
937 |
+
image_lr_save_path = f'{result_path}/{image[0].size[0]}_{image[0].size[1]}.png'
|
938 |
+
image[0].save(image_lr_save_path)
|
939 |
+
output_images.append(image[0])
|
940 |
+
|
941 |
+
####################################################### Phase Upscaling #####################################################
|
942 |
+
if use_progressive_upscaling:
|
943 |
+
if image_lr == None:
|
944 |
+
starting_scale = 2
|
945 |
+
else:
|
946 |
+
starting_scale = 1
|
947 |
+
else:
|
948 |
+
starting_scale = scale_num
|
949 |
+
|
950 |
+
for current_scale_num in range(starting_scale, scale_num + 1):
|
951 |
+
if self.lowvram:
|
952 |
+
latents = latents.to(device)
|
953 |
+
self.unet.to(device)
|
954 |
+
torch.cuda.empty_cache()
|
955 |
+
|
956 |
+
current_height = self.unet.config.sample_size * self.vae_scale_factor * current_scale_num
|
957 |
+
current_width = self.unet.config.sample_size * self.vae_scale_factor * current_scale_num
|
958 |
+
|
959 |
+
if height > width:
|
960 |
+
current_width = int(current_width * aspect_ratio)
|
961 |
+
else:
|
962 |
+
current_height = int(current_height * aspect_ratio)
|
963 |
+
|
964 |
+
if upscale_mode == "bicubic_latent" or debug:
|
965 |
+
latents = F.interpolate(latents.to(device), size=(int(current_height / self.vae_scale_factor), int(current_width / self.vae_scale_factor)), mode='bicubic')
|
966 |
+
else:
|
967 |
+
raise NotImplementedError
|
968 |
+
|
969 |
+
print("### Phase {} Denoising ###".format(current_scale_num))
|
970 |
+
noise_latents = []
|
971 |
+
noise = torch.randn_like(latents)
|
972 |
+
for timestep in timesteps:
|
973 |
+
noise_latent = self.scheduler.add_noise(latents, noise, timestep.unsqueeze(0))
|
974 |
+
noise_latents.append(noise_latent)
|
975 |
+
latents = noise_latents[0]
|
976 |
+
|
977 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
978 |
+
for i, t in enumerate(timesteps):
|
979 |
+
count = torch.zeros_like(latents)
|
980 |
+
value = torch.zeros_like(latents)
|
981 |
+
cosine_factor = 0.5 * (1 + torch.cos(torch.pi * (self.scheduler.config.num_train_timesteps - t) / self.scheduler.config.num_train_timesteps)).cpu()
|
982 |
+
if use_skip_residual:
|
983 |
+
c1 = cosine_factor ** cosine_scale_1
|
984 |
+
latents = latents * (1 - c1) + noise_latents[i] * c1
|
985 |
+
|
986 |
+
if use_multidiffusion:
|
987 |
+
if use_md_prompt:
|
988 |
+
md_prompt_embeds_list = []
|
989 |
+
md_add_text_embeds_list = []
|
990 |
+
for md_prompt in md_prompts[current_scale_num]:
|
991 |
+
(
|
992 |
+
md_prompt_embeds,
|
993 |
+
md_negative_prompt_embeds,
|
994 |
+
md_pooled_prompt_embeds,
|
995 |
+
md_negative_pooled_prompt_embeds,
|
996 |
+
) = self.encode_prompt(
|
997 |
+
prompt=md_prompt,
|
998 |
+
prompt_2=prompt_2,
|
999 |
+
device=device,
|
1000 |
+
num_images_per_prompt=num_images_per_prompt,
|
1001 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
1002 |
+
negative_prompt=negative_prompt,
|
1003 |
+
negative_prompt_2=negative_prompt_2,
|
1004 |
+
prompt_embeds=None,
|
1005 |
+
negative_prompt_embeds=None,
|
1006 |
+
pooled_prompt_embeds=None,
|
1007 |
+
negative_pooled_prompt_embeds=None,
|
1008 |
+
lora_scale=text_encoder_lora_scale,
|
1009 |
+
)
|
1010 |
+
md_prompt_embeds_list.append(torch.cat([md_negative_prompt_embeds, md_prompt_embeds], dim=0).to(device))
|
1011 |
+
md_add_text_embeds_list.append(torch.cat([md_negative_pooled_prompt_embeds, md_pooled_prompt_embeds], dim=0).to(device))
|
1012 |
+
del md_negative_prompt_embeds, md_negative_pooled_prompt_embeds
|
1013 |
+
|
1014 |
+
if use_md_prompt:
|
1015 |
+
random_jitter = True
|
1016 |
+
views = [(h_start*4, h_end*4, w_start*4, w_end*4) for h_start, h_end, w_start, w_end in views_attention[current_scale_num]]
|
1017 |
+
else:
|
1018 |
+
random_jitter = True
|
1019 |
+
views = self.get_views(current_height, current_width, stride=stride, window_size=self.unet.config.sample_size, random_jitter=random_jitter)
|
1020 |
+
|
1021 |
+
views_batch = [views[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
|
1022 |
+
|
1023 |
+
if use_md_prompt:
|
1024 |
+
views_prompt_embeds_input = [md_prompt_embeds_list[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
|
1025 |
+
views_add_text_embeds_input = [md_add_text_embeds_list[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
|
1026 |
+
|
1027 |
+
if random_jitter:
|
1028 |
+
jitter_range = int((self.unet.config.sample_size - stride) // 4)
|
1029 |
+
latents_ = F.pad(latents, (jitter_range, jitter_range, jitter_range, jitter_range), 'constant', 0)
|
1030 |
+
else:
|
1031 |
+
latents_ = latents
|
1032 |
+
|
1033 |
+
count_local = torch.zeros_like(latents_)
|
1034 |
+
value_local = torch.zeros_like(latents_)
|
1035 |
+
|
1036 |
+
for j, batch_view in enumerate(views_batch):
|
1037 |
+
vb_size = len(batch_view)
|
1038 |
+
latents_for_view = torch.cat(
|
1039 |
+
[
|
1040 |
+
latents_[:, :, h_start:h_end, w_start:w_end]
|
1041 |
+
for h_start, h_end, w_start, w_end in batch_view
|
1042 |
+
]
|
1043 |
+
)
|
1044 |
+
|
1045 |
+
latent_model_input = latents_for_view
|
1046 |
+
latent_model_input = (
|
1047 |
+
latent_model_input.repeat_interleave(2, dim=0)
|
1048 |
+
if do_classifier_free_guidance
|
1049 |
+
else latent_model_input
|
1050 |
+
)
|
1051 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1052 |
+
|
1053 |
+
add_time_ids_input = []
|
1054 |
+
for h_start, h_end, w_start, w_end in batch_view:
|
1055 |
+
add_time_ids_ = add_time_ids.clone()
|
1056 |
+
add_time_ids_[:, 2] = h_start * self.vae_scale_factor
|
1057 |
+
add_time_ids_[:, 3] = w_start * self.vae_scale_factor
|
1058 |
+
add_time_ids_input.append(add_time_ids_)
|
1059 |
+
add_time_ids_input = torch.cat(add_time_ids_input)
|
1060 |
+
|
1061 |
+
if not use_md_prompt:
|
1062 |
+
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size)
|
1063 |
+
add_text_embeds_input = torch.cat([add_text_embeds] * vb_size)
|
1064 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds_input, "time_ids": add_time_ids_input}
|
1065 |
+
noise_pred = self.unet(
|
1066 |
+
latent_model_input,
|
1067 |
+
t,
|
1068 |
+
encoder_hidden_states=prompt_embeds_input,
|
1069 |
+
added_cond_kwargs=added_cond_kwargs,
|
1070 |
+
return_dict=False,
|
1071 |
+
)[0]
|
1072 |
+
else:
|
1073 |
+
md_prompt_embeds_input = torch.cat(views_prompt_embeds_input[j])
|
1074 |
+
md_add_text_embeds_input = torch.cat(views_add_text_embeds_input[j])
|
1075 |
+
md_added_cond_kwargs = {"text_embeds": md_add_text_embeds_input, "time_ids": add_time_ids_input}
|
1076 |
+
noise_pred = self.unet(
|
1077 |
+
latent_model_input,
|
1078 |
+
t,
|
1079 |
+
encoder_hidden_states=md_prompt_embeds_input,
|
1080 |
+
added_cond_kwargs=md_added_cond_kwargs,
|
1081 |
+
return_dict=False,
|
1082 |
+
)[0]
|
1083 |
+
|
1084 |
+
if do_classifier_free_guidance:
|
1085 |
+
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2]
|
1086 |
+
noise_pred = noise_pred_uncond + multi_guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1087 |
+
|
1088 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1089 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1090 |
+
|
1091 |
+
self.scheduler._init_step_index(t)
|
1092 |
+
latents_denoised_batch = self.scheduler.step(
|
1093 |
+
noise_pred, t, latents_for_view, **extra_step_kwargs, return_dict=False)[0]
|
1094 |
+
|
1095 |
+
for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip(
|
1096 |
+
latents_denoised_batch.chunk(vb_size), batch_view
|
1097 |
+
):
|
1098 |
+
value_local[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised
|
1099 |
+
count_local[:, :, h_start:h_end, w_start:w_end] += 1
|
1100 |
+
|
1101 |
+
if random_jitter:
|
1102 |
+
value_local = value_local[: ,:, jitter_range: jitter_range + current_height // self.vae_scale_factor, jitter_range: jitter_range + current_width // self.vae_scale_factor]
|
1103 |
+
count_local = count_local[: ,:, jitter_range: jitter_range + current_height // self.vae_scale_factor, jitter_range: jitter_range + current_width // self.vae_scale_factor]
|
1104 |
+
|
1105 |
+
noise_index = i + 1 if i != (len(timesteps) - 1) else i
|
1106 |
+
|
1107 |
+
value_local = torch.where(count_local == 0, noise_latents[noise_index], value_local)
|
1108 |
+
count_local = torch.where(count_local == 0, torch.ones_like(count_local), count_local)
|
1109 |
+
if use_dilated_sampling:
|
1110 |
+
c2 = cosine_factor ** cosine_scale_2
|
1111 |
+
value += value_local / count_local * (1 - c2)
|
1112 |
+
count += torch.ones_like(value_local) * (1 - c2)
|
1113 |
+
else:
|
1114 |
+
value += value_local / count_local
|
1115 |
+
count += torch.ones_like(value_local)
|
1116 |
+
|
1117 |
+
if use_dilated_sampling:
|
1118 |
+
views = [[h, w] for h in range(current_scale_num) for w in range(current_scale_num)]
|
1119 |
+
views_batch = [views[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
|
1120 |
+
|
1121 |
+
h_pad = (current_scale_num - (latents.size(2) % current_scale_num)) % current_scale_num
|
1122 |
+
w_pad = (current_scale_num - (latents.size(3) % current_scale_num)) % current_scale_num
|
1123 |
+
latents_ = F.pad(latents, (w_pad, 0, h_pad, 0), 'constant', 0)
|
1124 |
+
|
1125 |
+
count_global = torch.zeros_like(latents_)
|
1126 |
+
value_global = torch.zeros_like(latents_)
|
1127 |
+
|
1128 |
+
if use_guassian:
|
1129 |
+
c3 = 0.99 * cosine_factor ** cosine_scale_3 + 1e-2
|
1130 |
+
std_, mean_ = latents_.std(), latents_.mean()
|
1131 |
+
latents_gaussian = gaussian_filter(latents_, kernel_size=(2*current_scale_num-1), sigma=sigma*c3)
|
1132 |
+
latents_gaussian = (latents_gaussian - latents_gaussian.mean()) / latents_gaussian.std() * std_ + mean_
|
1133 |
+
else:
|
1134 |
+
latents_gaussian = latents_
|
1135 |
+
|
1136 |
+
for j, batch_view in enumerate(views_batch):
|
1137 |
+
|
1138 |
+
latents_for_view = torch.cat(
|
1139 |
+
[
|
1140 |
+
latents_[:, :, h::current_scale_num, w::current_scale_num]
|
1141 |
+
for h, w in batch_view
|
1142 |
+
]
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
latents_for_view_gaussian = torch.cat(
|
1146 |
+
[
|
1147 |
+
latents_gaussian[:, :, h::current_scale_num, w::current_scale_num]
|
1148 |
+
for h, w in batch_view
|
1149 |
+
]
|
1150 |
+
)
|
1151 |
+
|
1152 |
+
if shuffle:
|
1153 |
+
shape = latents_for_view.shape
|
1154 |
+
shuffle_index = torch.stack([torch.randperm(shape[0]) for _ in range(latents_for_view.reshape(-1).shape[0]//shape[0]])
|
1155 |
+
shuffle_index = shuffle_index.view(shape[1],shape[2],shape[3],shape[0])
|
1156 |
+
original_index = torch.zeros_like(shuffle_index).scatter_(3, shuffle_index, torch.arange(shape[0]).repeat(shape[1], shape[2], shape[3], 1))
|
1157 |
+
shuffle_index = shuffle_index.permute(3,0,1,2).to(device)
|
1158 |
+
original_index = original_index.permute(3,0,1,2).to(device)
|
1159 |
+
latents_for_view_gaussian = latents_for_view_gaussian.gather(0, shuffle_index)
|
1160 |
+
|
1161 |
+
vb_size = latents_for_view.size(0)
|
1162 |
+
|
1163 |
+
latent_model_input = latents_for_view_gaussian
|
1164 |
+
latent_model_input = (
|
1165 |
+
latent_model_input.repeat_interleave(2, dim=0)
|
1166 |
+
if do_classifier_free_guidance
|
1167 |
+
else latent_model_input
|
1168 |
+
)
|
1169 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1170 |
+
|
1171 |
+
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size)
|
1172 |
+
add_text_embeds_input = torch.cat([add_text_embeds] * vb_size)
|
1173 |
+
add_time_ids_input = torch.cat([add_time_ids] * vb_size)
|
1174 |
+
|
1175 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds_input, "time_ids": add_time_ids_input}
|
1176 |
+
noise_pred = self.unet(
|
1177 |
+
latent_model_input,
|
1178 |
+
t,
|
1179 |
+
encoder_hidden_states=prompt_embeds_input,
|
1180 |
+
added_cond_kwargs=added_cond_kwargs,
|
1181 |
+
return_dict=False,
|
1182 |
+
)[0]
|
1183 |
+
|
1184 |
+
if do_classifier_free_guidance:
|
1185 |
+
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2]
|
1186 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1187 |
+
|
1188 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1189 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1190 |
+
|
1191 |
+
if shuffle:
|
1192 |
+
noise_pred = noise_pred.gather(0, original_index)
|
1193 |
+
|
1194 |
+
self.scheduler._init_step_index(t)
|
1195 |
+
latents_denoised_batch = self.scheduler.step(noise_pred, t, latents_for_view, **extra_step_kwargs, return_dict=False)[0]
|
1196 |
+
|
1197 |
+
for latents_view_denoised, (h, w) in zip(
|
1198 |
+
latents_denoised_batch.chunk(vb_size), batch_view
|
1199 |
+
):
|
1200 |
+
value_global[:, :, h::current_scale_num, w::current_scale_num] += latents_view_denoised
|
1201 |
+
count_global[:, :, h::current_scale_num, w::current_scale_num] += 1
|
1202 |
+
|
1203 |
+
value_global = value_global[: ,:, h_pad:, w_pad:]
|
1204 |
+
|
1205 |
+
if use_multidiffusion:
|
1206 |
+
c2 = cosine_factor ** cosine_scale_2
|
1207 |
+
value += value_global * c2
|
1208 |
+
count += torch.ones_like(value_global) * c2
|
1209 |
+
else:
|
1210 |
+
value += value_global
|
1211 |
+
count += torch.ones_like(value_global)
|
1212 |
+
|
1213 |
+
latents = torch.where(count > 0, value / count, value)
|
1214 |
+
|
1215 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1216 |
+
progress_bar.update()
|
1217 |
+
if callback is not None and i % callback_steps == 0:
|
1218 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1219 |
+
callback(step_idx, t, latents)
|
1220 |
+
|
1221 |
+
latents = (latents - latents.mean()) / latents.std() * anchor_std + anchor_mean
|
1222 |
+
if self.lowvram:
|
1223 |
+
latents = latents.cpu()
|
1224 |
+
torch.cuda.empty_cache()
|
1225 |
+
if not output_type == "latent":
|
1226 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1227 |
+
if self.lowvram:
|
1228 |
+
needs_upcasting = False
|
1229 |
+
self.unet.cpu()
|
1230 |
+
self.vae.to(device)
|
1231 |
+
|
1232 |
+
if needs_upcasting:
|
1233 |
+
self.upcast_vae()
|
1234 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1235 |
+
|
1236 |
+
print("### Phase {} Decoding ###".format(current_scale_num))
|
1237 |
+
if current_height > 2048 or current_width > 2048:
|
1238 |
+
self.enable_vae_tiling()
|
1239 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1240 |
+
else:
|
1241 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1242 |
+
|
1243 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1244 |
+
image[0].save(f'{result_path}/AccDiffusion_{current_scale_num}.png')
|
1245 |
+
output_images.append(image[0])
|
1246 |
+
|
1247 |
+
if needs_upcasting:
|
1248 |
+
self.vae.to(dtype=torch.float16)
|
1249 |
+
else:
|
1250 |
+
image = latents
|
1251 |
+
|
1252 |
+
self.maybe_free_model_hooks()
|
1253 |
+
|
1254 |
return output_images
|
1255 |
|
1256 |
|
|
|
1287 |
|
1288 |
args = parser.parse_args()
|
1289 |
|
|
|
1290 |
pipe = AccDiffusionSDXLPipeline.from_pretrained(args.model_ckpt, torch_dtype=torch.float16).to("cuda")
|
1291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1292 |
@spaces.GPU(duration=200)
|
1293 |
def infer(prompt, resolution, num_inference_steps, guidance_scale, seed, use_multidiffusion, use_skip_residual, use_dilated_sampling, use_progressive_upscaling, shuffle, use_md_prompt, progress=gr.Progress(track_tqdm=True)):
|
1294 |
set_seed(seed)
|
|
|
1318 |
cosine_scale_1=args.cosine_scale_1,
|
1319 |
cosine_scale_2=args.cosine_scale_2,
|
1320 |
cosine_scale_3=args.cosine_scale_3,
|
1321 |
+
sigma=args.sigma, use_guassian=args.use_guassian,
|
|
|
1322 |
multi_decoder=args.multi_decoder,
|
1323 |
upscale_mode=args.upscale_mode,
|
1324 |
use_multidiffusion=use_multidiffusion,
|
|
|
1327 |
use_dilated_sampling=use_dilated_sampling,
|
1328 |
shuffle=shuffle,
|
1329 |
result_path=result_path,
|
1330 |
+
debug=args.debug, save_attention_map=args.save_attention_map, use_md_prompt=use_md_prompt, c=args.c
|
|
|
|
|
|
|
1331 |
)
|
1332 |
print(images)
|
1333 |
|
1334 |
return images
|
1335 |
+
|
|
|
1336 |
MAX_SEED = np.iinfo(np.int32).max
|
1337 |
|
1338 |
+
css = """
|
1339 |
+
body {
|
1340 |
+
background: linear-gradient(135deg, #2c3e50, #4ca1af);
|
1341 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
1342 |
+
color: #ffffff;
|
1343 |
+
}
|
1344 |
+
#col-container {
|
1345 |
+
margin: 20px auto;
|
1346 |
+
padding: 20px;
|
1347 |
+
max-width: 900px;
|
1348 |
+
background-color: rgba(0, 0, 0, 0.5);
|
1349 |
+
border-radius: 12px;
|
1350 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.5);
|
1351 |
+
}
|
1352 |
+
h1, h2 {
|
1353 |
+
text-align: center;
|
1354 |
+
margin-bottom: 10px;
|
1355 |
+
}
|
1356 |
+
footer {
|
1357 |
+
visibility: hidden;
|
1358 |
+
}
|
1359 |
+
"""
|
1360 |
+
|
1361 |
with gr.Blocks(css=css) as demo:
|
1362 |
with gr.Column(elem_id="col-container"):
|
1363 |
gr.Markdown("<h1>AccDiffusion: Advanced AI Art Generator</h1>")
|
|
|
1372 |
with gr.Row():
|
1373 |
resolution = gr.Radio(
|
1374 |
label="Resolution",
|
1375 |
+
choices = [
|
1376 |
"1024,1024", "2048,2048", "2048,1024", "1536,3072", "3072,3072", "4096,4096", "4096,2048"
|
1377 |
],
|
1378 |
+
value = "1024,1024",
|
1379 |
interactive=True
|
1380 |
)
|
1381 |
with gr.Column():
|
|
|
1394 |
output_images = gr.Gallery(label="Output Images", format="png").style(grid=[2], height="auto")
|
1395 |
gr.Markdown("### Example Prompts")
|
1396 |
gr.Examples(
|
1397 |
+
examples = [
|
1398 |
["A surreal landscape with floating islands and vibrant colors."],
|
1399 |
["Cyberpunk cityscape at night with neon lights and futuristic architecture."],
|
1400 |
["A majestic dragon soaring over a medieval castle amidst stormy skies."],
|
|
|
1402 |
["Abstract geometric patterns in vivid, pulsating colors."],
|
1403 |
["A mystical forest illuminated by bioluminescent plants under a starry sky."]
|
1404 |
],
|
1405 |
+
inputs = [prompt],
|
1406 |
label="Click an example to populate the prompt box."
|
1407 |
)
|
1408 |
submit_btn.click(
|
1409 |
+
fn = infer,
|
1410 |
+
inputs = [prompt, resolution, num_inference_steps, guidance_scale, seed,
|
1411 |
+
use_multidiffusion, use_skip_residual, use_dilated_sampling, use_progressive_upscaling, shuffle, use_md_prompt],
|
1412 |
+
outputs = [output_images],
|
1413 |
show_api=False
|
1414 |
)
|
1415 |
demo.launch(show_api=False, show_error=True)
|