Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -79,8 +79,6 @@ EXAMPLE_DOC_STRING = """
|
|
79 |
```
|
80 |
"""
|
81 |
|
82 |
-
|
83 |
-
|
84 |
def gaussian_kernel(kernel_size=3, sigma=1.0, channels=3):
|
85 |
x_coord = torch.arange(kernel_size)
|
86 |
gaussian_1d = torch.exp(-(x_coord - (kernel_size - 1) / 2) ** 2 / (2 * sigma ** 2))
|
@@ -115,46 +113,7 @@ class AccDiffusionSDXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoade
|
|
115 |
"""
|
116 |
Pipeline for text-to-image generation using Stable Diffusion XL.
|
117 |
|
118 |
-
|
119 |
-
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
120 |
-
|
121 |
-
In addition the pipeline inherits the following loading methods:
|
122 |
-
- *LoRA*: [`StableDiffusionXLPipeline.load_lora_weights`]
|
123 |
-
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
124 |
-
|
125 |
-
as well as the following saving methods:
|
126 |
-
- *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`]
|
127 |
-
|
128 |
-
Args:
|
129 |
-
vae ([`AutoencoderKL`]):
|
130 |
-
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
131 |
-
text_encoder ([`CLIPTextModel`]):
|
132 |
-
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
133 |
-
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
134 |
-
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
135 |
-
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
136 |
-
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
137 |
-
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
138 |
-
specifically the
|
139 |
-
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
140 |
-
variant.
|
141 |
-
tokenizer (`CLIPTokenizer`):
|
142 |
-
Tokenizer of class
|
143 |
-
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
144 |
-
tokenizer_2 (`CLIPTokenizer`):
|
145 |
-
Second Tokenizer of class
|
146 |
-
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
147 |
-
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
148 |
-
scheduler ([`SchedulerMixin`]):
|
149 |
-
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
150 |
-
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
151 |
-
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
152 |
-
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
153 |
-
`stabilityai/stable-diffusion-xl-base-1-0`.
|
154 |
-
add_watermarker (`bool`, *optional*):
|
155 |
-
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
156 |
-
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
157 |
-
watermarker will be used.
|
158 |
"""
|
159 |
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
160 |
|
@@ -193,570 +152,7 @@ class AccDiffusionSDXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoade
|
|
193 |
else:
|
194 |
self.watermark = None
|
195 |
|
196 |
-
#
|
197 |
-
def enable_vae_slicing(self):
|
198 |
-
r"""
|
199 |
-
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
200 |
-
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
201 |
-
"""
|
202 |
-
self.vae.enable_slicing()
|
203 |
-
|
204 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
205 |
-
def disable_vae_slicing(self):
|
206 |
-
r"""
|
207 |
-
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
208 |
-
computing decoding in one step.
|
209 |
-
"""
|
210 |
-
self.vae.disable_slicing()
|
211 |
-
|
212 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
213 |
-
def enable_vae_tiling(self):
|
214 |
-
r"""
|
215 |
-
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
216 |
-
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
217 |
-
processing larger images.
|
218 |
-
"""
|
219 |
-
self.vae.enable_tiling()
|
220 |
-
|
221 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
222 |
-
def disable_vae_tiling(self):
|
223 |
-
r"""
|
224 |
-
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
225 |
-
computing decoding in one step.
|
226 |
-
"""
|
227 |
-
self.vae.disable_tiling()
|
228 |
-
|
229 |
-
def encode_prompt(
|
230 |
-
self,
|
231 |
-
prompt: str,
|
232 |
-
prompt_2: Optional[str] = None,
|
233 |
-
device: Optional[torch.device] = None,
|
234 |
-
num_images_per_prompt: int = 1,
|
235 |
-
do_classifier_free_guidance: bool = True,
|
236 |
-
negative_prompt: Optional[str] = None,
|
237 |
-
negative_prompt_2: Optional[str] = None,
|
238 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
239 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
240 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
241 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
242 |
-
lora_scale: Optional[float] = None,
|
243 |
-
):
|
244 |
-
r"""
|
245 |
-
Encodes the prompt into text encoder hidden states.
|
246 |
-
|
247 |
-
Args:
|
248 |
-
prompt (`str` or `List[str]`, *optional*):
|
249 |
-
prompt to be encoded
|
250 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
251 |
-
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
252 |
-
used in both text-encoders
|
253 |
-
device: (`torch.device`):
|
254 |
-
torch device
|
255 |
-
num_images_per_prompt (`int`):
|
256 |
-
number of images that should be generated per prompt
|
257 |
-
do_classifier_free_guidance (`bool`):
|
258 |
-
whether to use classifier free guidance or not
|
259 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
260 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
261 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
262 |
-
less than `1`).
|
263 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
264 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
265 |
-
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
266 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
267 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
268 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
269 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
270 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
271 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
272 |
-
argument.
|
273 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
274 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
275 |
-
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
276 |
-
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
277 |
-
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
278 |
-
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
279 |
-
input argument.
|
280 |
-
lora_scale (`float`, *optional*):
|
281 |
-
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
282 |
-
"""
|
283 |
-
device = device or self._execution_device
|
284 |
-
|
285 |
-
# set lora scale so that monkey patched LoRA
|
286 |
-
# function of text encoder can correctly access it
|
287 |
-
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
288 |
-
self._lora_scale = lora_scale
|
289 |
-
|
290 |
-
# dynamically adjust the LoRA scale
|
291 |
-
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
292 |
-
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
293 |
-
|
294 |
-
if prompt is not None and isinstance(prompt, str):
|
295 |
-
batch_size = 1
|
296 |
-
elif prompt is not None and isinstance(prompt, list):
|
297 |
-
batch_size = len(prompt)
|
298 |
-
else:
|
299 |
-
batch_size = prompt_embeds.shape[0]
|
300 |
-
|
301 |
-
# Define tokenizers and text encoders
|
302 |
-
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
303 |
-
text_encoders = (
|
304 |
-
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
305 |
-
)
|
306 |
-
|
307 |
-
if prompt_embeds is None:
|
308 |
-
prompt_2 = prompt_2 or prompt
|
309 |
-
# textual inversion: procecss multi-vector tokens if necessary
|
310 |
-
prompt_embeds_list = []
|
311 |
-
prompts = [prompt, prompt_2]
|
312 |
-
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
313 |
-
if isinstance(self, TextualInversionLoaderMixin):
|
314 |
-
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
315 |
-
|
316 |
-
text_inputs = tokenizer(
|
317 |
-
prompt,
|
318 |
-
padding="max_length",
|
319 |
-
max_length=tokenizer.model_max_length,
|
320 |
-
truncation=True,
|
321 |
-
return_tensors="pt",
|
322 |
-
)
|
323 |
-
|
324 |
-
text_input_ids = text_inputs.input_ids
|
325 |
-
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
326 |
-
|
327 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
328 |
-
text_input_ids, untruncated_ids
|
329 |
-
):
|
330 |
-
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
331 |
-
logger.warning(
|
332 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
333 |
-
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
334 |
-
)
|
335 |
-
|
336 |
-
prompt_embeds = text_encoder(
|
337 |
-
text_input_ids.to(device),
|
338 |
-
output_hidden_states=True,
|
339 |
-
)
|
340 |
-
|
341 |
-
# We are only ALWAYS interested in the pooled output of the final text encoder
|
342 |
-
pooled_prompt_embeds = prompt_embeds[0]
|
343 |
-
prompt_embeds = prompt_embeds.hidden_states[-2]
|
344 |
-
|
345 |
-
prompt_embeds_list.append(prompt_embeds)
|
346 |
-
|
347 |
-
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
348 |
-
|
349 |
-
# get unconditional embeddings for classifier free guidance
|
350 |
-
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
351 |
-
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
352 |
-
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
353 |
-
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
354 |
-
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
355 |
-
negative_prompt = negative_prompt or ""
|
356 |
-
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
357 |
-
|
358 |
-
uncond_tokens: List[str]
|
359 |
-
if prompt is not None and type(prompt) is not type(negative_prompt):
|
360 |
-
raise TypeError(
|
361 |
-
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
362 |
-
f" {type(prompt)}."
|
363 |
-
)
|
364 |
-
elif isinstance(negative_prompt, str):
|
365 |
-
uncond_tokens = [negative_prompt, negative_prompt_2]
|
366 |
-
elif batch_size != len(negative_prompt):
|
367 |
-
raise ValueError(
|
368 |
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
369 |
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
370 |
-
" the batch size of `prompt`."
|
371 |
-
)
|
372 |
-
else:
|
373 |
-
uncond_tokens = [negative_prompt, negative_prompt_2]
|
374 |
-
|
375 |
-
negative_prompt_embeds_list = []
|
376 |
-
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
377 |
-
if isinstance(self, TextualInversionLoaderMixin):
|
378 |
-
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
379 |
-
|
380 |
-
max_length = prompt_embeds.shape[1]
|
381 |
-
uncond_input = tokenizer(
|
382 |
-
negative_prompt,
|
383 |
-
padding="max_length",
|
384 |
-
max_length=max_length,
|
385 |
-
truncation=True,
|
386 |
-
return_tensors="pt",
|
387 |
-
)
|
388 |
-
|
389 |
-
negative_prompt_embeds = text_encoder(
|
390 |
-
uncond_input.input_ids.to(device),
|
391 |
-
output_hidden_states=True,
|
392 |
-
)
|
393 |
-
# We are only ALWAYS interested in the pooled output of the final text encoder
|
394 |
-
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
395 |
-
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
396 |
-
|
397 |
-
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
398 |
-
|
399 |
-
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
400 |
-
|
401 |
-
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
402 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
403 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
404 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
405 |
-
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
406 |
-
|
407 |
-
if do_classifier_free_guidance:
|
408 |
-
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
409 |
-
seq_len = negative_prompt_embeds.shape[1]
|
410 |
-
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
411 |
-
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
412 |
-
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
413 |
-
|
414 |
-
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
415 |
-
bs_embed * num_images_per_prompt, -1
|
416 |
-
)
|
417 |
-
if do_classifier_free_guidance:
|
418 |
-
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
419 |
-
bs_embed * num_images_per_prompt, -1
|
420 |
-
)
|
421 |
-
|
422 |
-
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
423 |
-
|
424 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
425 |
-
def prepare_extra_step_kwargs(self, generator, eta):
|
426 |
-
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
427 |
-
# eta (ฮท) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
428 |
-
# eta corresponds to ฮท in DDIM paper: https://arxiv.org/abs/2010.02502
|
429 |
-
# and should be between [0, 1]
|
430 |
-
|
431 |
-
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
432 |
-
extra_step_kwargs = {}
|
433 |
-
if accepts_eta:
|
434 |
-
extra_step_kwargs["eta"] = eta
|
435 |
-
|
436 |
-
# check if the scheduler accepts generator
|
437 |
-
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
438 |
-
if accepts_generator:
|
439 |
-
extra_step_kwargs["generator"] = generator
|
440 |
-
return extra_step_kwargs
|
441 |
-
|
442 |
-
def check_inputs(
|
443 |
-
self,
|
444 |
-
prompt,
|
445 |
-
prompt_2,
|
446 |
-
height,
|
447 |
-
width,
|
448 |
-
callback_steps,
|
449 |
-
negative_prompt=None,
|
450 |
-
negative_prompt_2=None,
|
451 |
-
prompt_embeds=None,
|
452 |
-
negative_prompt_embeds=None,
|
453 |
-
pooled_prompt_embeds=None,
|
454 |
-
negative_pooled_prompt_embeds=None,
|
455 |
-
num_images_per_prompt=None,
|
456 |
-
):
|
457 |
-
if height % 8 != 0 or width % 8 != 0:
|
458 |
-
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
459 |
-
|
460 |
-
if (callback_steps is None) or (
|
461 |
-
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
462 |
-
):
|
463 |
-
raise ValueError(
|
464 |
-
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
465 |
-
f" {type(callback_steps)}."
|
466 |
-
)
|
467 |
-
|
468 |
-
if prompt is not None and prompt_embeds is not None:
|
469 |
-
raise ValueError(
|
470 |
-
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
471 |
-
" only forward one of the two."
|
472 |
-
)
|
473 |
-
elif prompt_2 is not None and prompt_embeds is not None:
|
474 |
-
raise ValueError(
|
475 |
-
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
476 |
-
" only forward one of the two."
|
477 |
-
)
|
478 |
-
elif prompt is None and prompt_embeds is None:
|
479 |
-
raise ValueError(
|
480 |
-
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
481 |
-
)
|
482 |
-
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
483 |
-
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
484 |
-
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
485 |
-
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
486 |
-
|
487 |
-
if negative_prompt is not None and negative_prompt_embeds is not None:
|
488 |
-
raise ValueError(
|
489 |
-
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
490 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
491 |
-
)
|
492 |
-
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
493 |
-
raise ValueError(
|
494 |
-
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
495 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
496 |
-
)
|
497 |
-
|
498 |
-
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
499 |
-
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
500 |
-
raise ValueError(
|
501 |
-
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
502 |
-
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
503 |
-
f" {negative_prompt_embeds.shape}."
|
504 |
-
)
|
505 |
-
|
506 |
-
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
507 |
-
raise ValueError(
|
508 |
-
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
509 |
-
)
|
510 |
-
|
511 |
-
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
512 |
-
raise ValueError(
|
513 |
-
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
514 |
-
)
|
515 |
-
|
516 |
-
if max(height, width) % 1024 != 0:
|
517 |
-
raise ValueError(f"the larger one of `height` and `width` has to be divisible by 1024 but are {height} and {width}.")
|
518 |
-
|
519 |
-
if num_images_per_prompt != 1:
|
520 |
-
warnings.warn("num_images_per_prompt != 1 is not supported by AccDiffusion and will be ignored.")
|
521 |
-
num_images_per_prompt = 1
|
522 |
-
|
523 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
524 |
-
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
525 |
-
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
526 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
527 |
-
raise ValueError(
|
528 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
529 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
530 |
-
)
|
531 |
-
|
532 |
-
if latents is None:
|
533 |
-
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
534 |
-
else:
|
535 |
-
latents = latents.to(device)
|
536 |
-
|
537 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
538 |
-
latents = latents * self.scheduler.init_noise_sigma
|
539 |
-
return latents
|
540 |
-
|
541 |
-
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
|
542 |
-
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
543 |
-
|
544 |
-
passed_add_embed_dim = (
|
545 |
-
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
|
546 |
-
)
|
547 |
-
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
548 |
-
|
549 |
-
if expected_add_embed_dim != passed_add_embed_dim:
|
550 |
-
raise ValueError(
|
551 |
-
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. \
|
552 |
-
The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
553 |
-
)
|
554 |
-
|
555 |
-
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
556 |
-
return add_time_ids
|
557 |
-
|
558 |
-
def get_views(self, height, width, window_size=128, stride=64, random_jitter=False):
|
559 |
-
# Here, we define the mappings F_i (see Eq. 7 in the MultiDiffusion paper https://arxiv.org/abs/2302.08113)
|
560 |
-
# if panorama's height/width < window_size, num_blocks of height/width should return 1
|
561 |
-
height //= self.vae_scale_factor
|
562 |
-
width //= self.vae_scale_factor
|
563 |
-
num_blocks_height = int((height - window_size) / stride - 1e-6) + 2 if height > window_size else 1
|
564 |
-
num_blocks_width = int((width - window_size) / stride - 1e-6) + 2 if width > window_size else 1
|
565 |
-
total_num_blocks = int(num_blocks_height * num_blocks_width)
|
566 |
-
views = []
|
567 |
-
for i in range(total_num_blocks):
|
568 |
-
h_start = int((i // num_blocks_width) * stride)
|
569 |
-
h_end = h_start + window_size
|
570 |
-
w_start = int((i % num_blocks_width) * stride)
|
571 |
-
w_end = w_start + window_size
|
572 |
-
|
573 |
-
if h_end > height:
|
574 |
-
h_start = int(h_start + height - h_end)
|
575 |
-
h_end = int(height)
|
576 |
-
if w_end > width:
|
577 |
-
w_start = int(w_start + width - w_end)
|
578 |
-
w_end = int(width)
|
579 |
-
if h_start < 0:
|
580 |
-
h_end = int(h_end - h_start)
|
581 |
-
h_start = 0
|
582 |
-
if w_start < 0:
|
583 |
-
w_end = int(w_end - w_start)
|
584 |
-
w_start = 0
|
585 |
-
|
586 |
-
if random_jitter:
|
587 |
-
jitter_range = (window_size - stride) // 4
|
588 |
-
w_jitter = 0
|
589 |
-
h_jitter = 0
|
590 |
-
if (w_start != 0) and (w_end != width):
|
591 |
-
w_jitter = random.randint(-jitter_range, jitter_range)
|
592 |
-
elif (w_start == 0) and (w_end != width):
|
593 |
-
w_jitter = random.randint(-jitter_range, 0)
|
594 |
-
elif (w_start != 0) and (w_end == width):
|
595 |
-
w_jitter = random.randint(0, jitter_range)
|
596 |
-
|
597 |
-
if (h_start != 0) and (h_end != height):
|
598 |
-
h_jitter = random.randint(-jitter_range, jitter_range)
|
599 |
-
elif (h_start == 0) and (h_end != height):
|
600 |
-
h_jitter = random.randint(-jitter_range, 0)
|
601 |
-
elif (h_start != 0) and (h_end == height):
|
602 |
-
h_jitter = random.randint(0, jitter_range)
|
603 |
-
# When using jitter, the noise will be padded by jitterrange, so we need to add it to the view.
|
604 |
-
h_start = h_start + h_jitter + jitter_range
|
605 |
-
h_end = h_end + h_jitter + jitter_range
|
606 |
-
w_start = w_start + w_jitter + jitter_range
|
607 |
-
w_end = w_end + w_jitter + jitter_range
|
608 |
-
|
609 |
-
views.append((h_start, h_end, w_start, w_end))
|
610 |
-
return views
|
611 |
-
|
612 |
-
|
613 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
614 |
-
def upcast_vae(self):
|
615 |
-
dtype = self.vae.dtype
|
616 |
-
self.vae.to(dtype=torch.float32)
|
617 |
-
use_torch_2_0_or_xformers = isinstance(
|
618 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
619 |
-
(
|
620 |
-
AttnProcessor2_0,
|
621 |
-
XFormersAttnProcessor,
|
622 |
-
LoRAXFormersAttnProcessor,
|
623 |
-
LoRAAttnProcessor2_0,
|
624 |
-
),
|
625 |
-
)
|
626 |
-
# if xformers or torch_2_0 is used attention block does not need
|
627 |
-
# to be in float32 which can save lots of memory
|
628 |
-
if use_torch_2_0_or_xformers:
|
629 |
-
self.vae.post_quant_conv.to(dtype)
|
630 |
-
self.vae.decoder.conv_in.to(dtype)
|
631 |
-
self.vae.decoder.mid_block.to(dtype)
|
632 |
-
|
633 |
-
|
634 |
-
def register_attention_control(self, controller):
|
635 |
-
attn_procs = {}
|
636 |
-
cross_att_count = 0
|
637 |
-
ori_attn_processors = self.unet.attn_processors
|
638 |
-
for name in self.unet.attn_processors.keys():
|
639 |
-
if name.startswith("mid_block"):
|
640 |
-
place_in_unet = "mid"
|
641 |
-
elif name.startswith("up_blocks"):
|
642 |
-
place_in_unet = "up"
|
643 |
-
elif name.startswith("down_blocks"):
|
644 |
-
place_in_unet = "down"
|
645 |
-
else:
|
646 |
-
continue
|
647 |
-
cross_att_count += 1
|
648 |
-
attn_procs[name] = P2PCrossAttnProcessor(controller=controller, place_in_unet=place_in_unet)
|
649 |
-
|
650 |
-
self.unet.set_attn_processor(attn_procs)
|
651 |
-
controller.num_att_layers = cross_att_count
|
652 |
-
return ori_attn_processors
|
653 |
-
|
654 |
-
def recover_attention_control(self, ori_attn_processors):
|
655 |
-
self.unet.set_attn_processor(ori_attn_processors)
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
# Overrride to properly handle the loading and unloading of the additional text encoder.
|
660 |
-
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
|
661 |
-
# We could have accessed the unet config from `lora_state_dict()` too. We pass
|
662 |
-
# it here explicitly to be able to tell that it's coming from an SDXL
|
663 |
-
# pipeline.
|
664 |
-
|
665 |
-
# Remove any existing hooks.
|
666 |
-
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
667 |
-
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
|
668 |
-
else:
|
669 |
-
raise ImportError("Offloading requires `accelerate v0.17.0` or higher.")
|
670 |
-
|
671 |
-
is_model_cpu_offload = False
|
672 |
-
is_sequential_cpu_offload = False
|
673 |
-
recursive = False
|
674 |
-
for _, component in self.components.items():
|
675 |
-
if isinstance(component, torch.nn.Module):
|
676 |
-
if hasattr(component, "_hf_hook"):
|
677 |
-
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
|
678 |
-
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
|
679 |
-
logger.info(
|
680 |
-
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
|
681 |
-
)
|
682 |
-
recursive = is_sequential_cpu_offload
|
683 |
-
remove_hook_from_module(component, recurse=recursive)
|
684 |
-
state_dict, network_alphas = self.lora_state_dict(
|
685 |
-
pretrained_model_name_or_path_or_dict,
|
686 |
-
unet_config=self.unet.config,
|
687 |
-
**kwargs,
|
688 |
-
)
|
689 |
-
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
|
690 |
-
|
691 |
-
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
|
692 |
-
if len(text_encoder_state_dict) > 0:
|
693 |
-
self.load_lora_into_text_encoder(
|
694 |
-
text_encoder_state_dict,
|
695 |
-
network_alphas=network_alphas,
|
696 |
-
text_encoder=self.text_encoder,
|
697 |
-
prefix="text_encoder",
|
698 |
-
lora_scale=self.lora_scale,
|
699 |
-
)
|
700 |
-
|
701 |
-
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
|
702 |
-
if len(text_encoder_2_state_dict) > 0:
|
703 |
-
self.load_lora_into_text_encoder(
|
704 |
-
text_encoder_2_state_dict,
|
705 |
-
network_alphas=network_alphas,
|
706 |
-
text_encoder=self.text_encoder_2,
|
707 |
-
prefix="text_encoder_2",
|
708 |
-
lora_scale=self.lora_scale,
|
709 |
-
)
|
710 |
-
|
711 |
-
# Offload back.
|
712 |
-
if is_model_cpu_offload:
|
713 |
-
self.enable_model_cpu_offload()
|
714 |
-
elif is_sequential_cpu_offload:
|
715 |
-
self.enable_sequential_cpu_offload()
|
716 |
-
|
717 |
-
@classmethod
|
718 |
-
def save_lora_weights(
|
719 |
-
self,
|
720 |
-
save_directory: Union[str, os.PathLike],
|
721 |
-
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
722 |
-
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
723 |
-
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
724 |
-
is_main_process: bool = True,
|
725 |
-
weight_name: str = None,
|
726 |
-
save_function: Callable = None,
|
727 |
-
safe_serialization: bool = True,
|
728 |
-
):
|
729 |
-
state_dict = {}
|
730 |
-
|
731 |
-
def pack_weights(layers, prefix):
|
732 |
-
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
|
733 |
-
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
|
734 |
-
return layers_state_dict
|
735 |
-
|
736 |
-
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
|
737 |
-
raise ValueError(
|
738 |
-
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
|
739 |
-
)
|
740 |
-
|
741 |
-
if unet_lora_layers:
|
742 |
-
state_dict.update(pack_weights(unet_lora_layers, "unet"))
|
743 |
-
|
744 |
-
if text_encoder_lora_layers and text_encoder_2_lora_layers:
|
745 |
-
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
|
746 |
-
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
|
747 |
-
|
748 |
-
self.write_lora_layers(
|
749 |
-
state_dict=state_dict,
|
750 |
-
save_directory=save_directory,
|
751 |
-
is_main_process=is_main_process,
|
752 |
-
weight_name=weight_name,
|
753 |
-
save_function=save_function,
|
754 |
-
safe_serialization=safe_serialization,
|
755 |
-
)
|
756 |
-
|
757 |
-
def _remove_text_encoder_monkey_patch(self):
|
758 |
-
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
|
759 |
-
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)
|
760 |
|
761 |
@torch.no_grad()
|
762 |
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
@@ -818,779 +214,23 @@ class AccDiffusionSDXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoade
|
|
818 |
c : Optional[float] = 0.3,
|
819 |
):
|
820 |
r"""
|
821 |
-
|
822 |
-
|
823 |
-
Args:
|
824 |
-
prompt (`str` or `List[str]`, *optional*):
|
825 |
-
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
826 |
-
instead.
|
827 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
828 |
-
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
829 |
-
used in both text-encoders
|
830 |
-
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
831 |
-
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
832 |
-
Anything below 512 pixels won't work well for
|
833 |
-
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
834 |
-
and checkpoints that are not specifically fine-tuned on low resolutions.
|
835 |
-
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
836 |
-
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
837 |
-
Anything below 512 pixels won't work well for
|
838 |
-
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
839 |
-
and checkpoints that are not specifically fine-tuned on low resolutions.
|
840 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
841 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
842 |
-
expense of slower inference.
|
843 |
-
denoising_end (`float`, *optional*):
|
844 |
-
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
845 |
-
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
846 |
-
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
847 |
-
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
848 |
-
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
849 |
-
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
850 |
-
guidance_scale (`float`, *optional*, defaults to 5.0):
|
851 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
852 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
853 |
-
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
854 |
-
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
855 |
-
usually at the expense of lower image quality.
|
856 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
857 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
858 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
859 |
-
less than `1`).
|
860 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
861 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
862 |
-
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
863 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
864 |
-
The number of images to generate per prompt.
|
865 |
-
eta (`float`, *optional*, defaults to 0.0):
|
866 |
-
Corresponds to parameter eta (ฮท) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
867 |
-
[`schedulers.DDIMScheduler`], will be ignored for others.
|
868 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
869 |
-
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
870 |
-
to make generation deterministic.
|
871 |
-
latents (`torch.FloatTensor`, *optional*):
|
872 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
873 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
874 |
-
tensor will ge generated by sampling using the supplied random `generator`.
|
875 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
876 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
877 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
878 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
879 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
880 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
881 |
-
argument.
|
882 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
883 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
884 |
-
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
885 |
-
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
886 |
-
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
887 |
-
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
888 |
-
input argument.
|
889 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
890 |
-
The output format of the generate image. Choose between
|
891 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
892 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
893 |
-
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
894 |
-
of a plain tuple.
|
895 |
-
callback (`Callable`, *optional*):
|
896 |
-
A function that will be called every `callback_steps` steps during inference. The function will be
|
897 |
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
898 |
-
callback_steps (`int`, *optional*, defaults to 1):
|
899 |
-
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
900 |
-
called at every step.
|
901 |
-
cross_attention_kwargs (`dict`, *optional*):
|
902 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
903 |
-
`self.processor` in
|
904 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
905 |
-
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
906 |
-
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
907 |
-
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `ฯ` in equation 16. of
|
908 |
-
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
909 |
-
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
910 |
-
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
911 |
-
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
912 |
-
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
913 |
-
explained in section 2.2 of
|
914 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
915 |
-
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
916 |
-
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
917 |
-
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
918 |
-
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
919 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
920 |
-
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
921 |
-
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
922 |
-
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
923 |
-
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
924 |
-
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
925 |
-
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
926 |
-
micro-conditioning as explained in section 2.2 of
|
927 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
928 |
-
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
929 |
-
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
930 |
-
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
931 |
-
micro-conditioning as explained in section 2.2 of
|
932 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
933 |
-
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
934 |
-
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
935 |
-
To negatively condition the generation process based on a target image resolution. It should be as same
|
936 |
-
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
937 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
938 |
-
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
939 |
-
################### AccDiffusion specific parameters ####################
|
940 |
-
# We build AccDiffusion based on Demofusion pipeline (see paper: https://arxiv.org/pdf/2311.16973.pdf)
|
941 |
-
image_lr (`torch.FloatTensor`, *optional*, , defaults to None):
|
942 |
-
Low-resolution image input for upscaling.
|
943 |
-
view_batch_size (`int`, defaults to 16):
|
944 |
-
The batch size for multiple denoising paths. Typically, a larger batch size can result in higher
|
945 |
-
efficiency but comes with increased GPU memory requirements.
|
946 |
-
multi_decoder (`bool`, defaults to True):
|
947 |
-
Determine whether to use a tiled decoder. Generally, when the resolution exceeds 3072x3072,
|
948 |
-
a tiled decoder becomes necessary.
|
949 |
-
stride (`int`, defaults to 64):
|
950 |
-
The stride of moving local patches. A smaller stride is better for alleviating seam issues,
|
951 |
-
but it also introduces additional computational overhead and inference time.
|
952 |
-
cosine_scale_1 (`float`, defaults to 3):
|
953 |
-
Control the strength of skip-residual. For specific impacts, please refer to Appendix C
|
954 |
-
in the DemoFusion paper. (see paper : https://arxiv.org/pdf/2311.16973.pdf)
|
955 |
-
cosine_scale_2 (`float`, defaults to 1):
|
956 |
-
Control the strength of dilated sampling. For specific impacts, please refer to Appendix C
|
957 |
-
in the DemoFusion paper.(see paper : https://arxiv.org/pdf/2311.16973.pdf)
|
958 |
-
cosine_scale_3 (`float`, defaults to 1):
|
959 |
-
Control the strength of the gaussion filter. For specific impacts, please refer to Appendix C
|
960 |
-
in the DemoFusion paper.(see paper : https://arxiv.org/pdf/2311.16973.pdf)
|
961 |
-
sigma (`float`, defaults to 1):
|
962 |
-
The standard value of the gaussian filter.
|
963 |
-
show_image (`bool`, defaults to False):
|
964 |
-
Determine whether to show intermediate results during generation.
|
965 |
-
lowvram (`bool`, defaults to False):
|
966 |
-
Try to fit in 8 Gb of VRAM, with xformers installed.
|
967 |
-
|
968 |
-
Examples:
|
969 |
-
|
970 |
-
Returns:
|
971 |
-
a `list` with the generated images at each phase.
|
972 |
"""
|
973 |
-
|
974 |
-
|
975 |
-
num_inference_steps = 1
|
976 |
-
|
977 |
-
# 0. Default height and width to unet
|
978 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
979 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
980 |
-
|
981 |
-
x1_size = self.default_sample_size * self.vae_scale_factor
|
982 |
-
|
983 |
-
height_scale = height / x1_size
|
984 |
-
width_scale = width / x1_size
|
985 |
-
scale_num = int(max(height_scale, width_scale))
|
986 |
-
aspect_ratio = min(height_scale, width_scale) / max(height_scale, width_scale)
|
987 |
-
|
988 |
-
original_size = original_size or (height, width)
|
989 |
-
target_size = target_size or (height, width)
|
990 |
-
|
991 |
-
if attn_res is None:
|
992 |
-
attn_res = int(np.ceil(self.default_sample_size * self.vae_scale_factor / 32)), int(np.ceil(self.default_sample_size * self.vae_scale_factor / 32))
|
993 |
-
self.attn_res = attn_res
|
994 |
-
|
995 |
-
if lowvram:
|
996 |
-
attention_map_device = torch.device("cpu")
|
997 |
-
else:
|
998 |
-
attention_map_device = self.device
|
999 |
-
|
1000 |
-
self.controller = create_controller(
|
1001 |
-
prompt, cross_attention_kwargs, num_inference_steps, tokenizer=self.tokenizer, device=attention_map_device, attn_res=self.attn_res
|
1002 |
-
)
|
1003 |
-
|
1004 |
-
if save_attention_map or use_md_prompt:
|
1005 |
-
ori_attn_processors = self.register_attention_control(self.controller) # add attention controller
|
1006 |
-
|
1007 |
-
# 1. Check inputs. Raise error if not correct
|
1008 |
-
self.check_inputs(
|
1009 |
-
prompt,
|
1010 |
-
prompt_2,
|
1011 |
-
height,
|
1012 |
-
width,
|
1013 |
-
callback_steps,
|
1014 |
-
negative_prompt,
|
1015 |
-
negative_prompt_2,
|
1016 |
-
prompt_embeds,
|
1017 |
-
negative_prompt_embeds,
|
1018 |
-
pooled_prompt_embeds,
|
1019 |
-
negative_pooled_prompt_embeds,
|
1020 |
-
num_images_per_prompt,
|
1021 |
-
)
|
1022 |
-
|
1023 |
-
# 2. Define call parameters
|
1024 |
-
if prompt is not None and isinstance(prompt, str):
|
1025 |
-
batch_size = 1
|
1026 |
-
elif prompt is not None and isinstance(prompt, list):
|
1027 |
-
batch_size = len(prompt)
|
1028 |
-
else:
|
1029 |
-
batch_size = prompt_embeds.shape[0]
|
1030 |
-
|
1031 |
-
device = self._execution_device
|
1032 |
-
self.lowvram = lowvram
|
1033 |
-
if self.lowvram:
|
1034 |
-
self.vae.cpu()
|
1035 |
-
self.unet.cpu()
|
1036 |
-
self.text_encoder.to(device)
|
1037 |
-
self.text_encoder_2.to(device)
|
1038 |
-
# image_lr.cpu()
|
1039 |
-
|
1040 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1041 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1042 |
-
# corresponds to doing no classifier free guidance.
|
1043 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
1044 |
-
|
1045 |
-
# 3. Encode input prompt
|
1046 |
-
text_encoder_lora_scale = (
|
1047 |
-
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1048 |
-
)
|
1049 |
-
|
1050 |
-
(
|
1051 |
-
prompt_embeds,
|
1052 |
-
negative_prompt_embeds,
|
1053 |
-
pooled_prompt_embeds,
|
1054 |
-
negative_pooled_prompt_embeds,
|
1055 |
-
) = self.encode_prompt(
|
1056 |
-
prompt=prompt,
|
1057 |
-
prompt_2=prompt_2,
|
1058 |
-
device=device,
|
1059 |
-
num_images_per_prompt=num_images_per_prompt,
|
1060 |
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1061 |
-
negative_prompt=negative_prompt,
|
1062 |
-
negative_prompt_2=negative_prompt_2,
|
1063 |
-
prompt_embeds=prompt_embeds,
|
1064 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
1065 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
1066 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1067 |
-
lora_scale=text_encoder_lora_scale,
|
1068 |
-
)
|
1069 |
-
|
1070 |
-
# 4. Prepare timesteps
|
1071 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1072 |
-
|
1073 |
-
timesteps = self.scheduler.timesteps
|
1074 |
-
|
1075 |
-
# 5. Prepare latent variables
|
1076 |
-
num_channels_latents = self.unet.config.in_channels
|
1077 |
-
latents = self.prepare_latents(
|
1078 |
-
batch_size * num_images_per_prompt,
|
1079 |
-
num_channels_latents,
|
1080 |
-
height // scale_num,
|
1081 |
-
width // scale_num,
|
1082 |
-
prompt_embeds.dtype,
|
1083 |
-
device,
|
1084 |
-
generator,
|
1085 |
-
latents,
|
1086 |
-
)
|
1087 |
-
|
1088 |
-
|
1089 |
-
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1090 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1091 |
-
|
1092 |
-
# 7. Prepare added time ids & embeddings
|
1093 |
-
add_text_embeds = pooled_prompt_embeds
|
1094 |
-
|
1095 |
-
add_time_ids = self._get_add_time_ids(
|
1096 |
-
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
1097 |
-
)
|
1098 |
-
|
1099 |
-
if negative_original_size is not None and negative_target_size is not None:
|
1100 |
-
negative_add_time_ids = self._get_add_time_ids(
|
1101 |
-
negative_original_size,
|
1102 |
-
negative_crops_coords_top_left,
|
1103 |
-
negative_target_size,
|
1104 |
-
dtype=prompt_embeds.dtype,
|
1105 |
-
)
|
1106 |
-
else:
|
1107 |
-
negative_add_time_ids = add_time_ids
|
1108 |
-
|
1109 |
-
if do_classifier_free_guidance:
|
1110 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0).to(device)
|
1111 |
-
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0).to(device)
|
1112 |
-
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0).to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1113 |
-
|
1114 |
-
del negative_prompt_embeds, negative_pooled_prompt_embeds, negative_add_time_ids
|
1115 |
-
|
1116 |
-
# 8. Denoising loop
|
1117 |
-
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1118 |
-
|
1119 |
-
|
1120 |
-
# 7.1 Apply denoising_end
|
1121 |
-
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
|
1122 |
-
discrete_timestep_cutoff = int(
|
1123 |
-
round(
|
1124 |
-
self.scheduler.config.num_train_timesteps
|
1125 |
-
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
1126 |
-
)
|
1127 |
-
)
|
1128 |
-
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1129 |
-
timesteps = timesteps[:num_inference_steps]
|
1130 |
-
|
1131 |
output_images = []
|
1132 |
-
|
1133 |
-
###################################################### Phase Initialization ########################################################
|
1134 |
-
|
1135 |
-
if self.lowvram:
|
1136 |
-
self.text_encoder.cpu()
|
1137 |
-
self.text_encoder_2.cpu()
|
1138 |
-
|
1139 |
-
if image_lr == None:
|
1140 |
-
print("### Phase 1 Denoising ###")
|
1141 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1142 |
-
for i, t in enumerate(timesteps):
|
1143 |
-
|
1144 |
-
if self.lowvram:
|
1145 |
-
self.vae.cpu()
|
1146 |
-
self.unet.to(device)
|
1147 |
-
|
1148 |
-
latents_for_view = latents
|
1149 |
-
|
1150 |
-
# expand the latents if we are doing classifier free guidance
|
1151 |
-
latent_model_input = (
|
1152 |
-
latents.repeat_interleave(2, dim=0)
|
1153 |
-
if do_classifier_free_guidance
|
1154 |
-
else latents
|
1155 |
-
)
|
1156 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1157 |
-
|
1158 |
-
# predict the noise residual
|
1159 |
-
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1160 |
-
|
1161 |
-
noise_pred = self.unet(
|
1162 |
-
latent_model_input,
|
1163 |
-
t,
|
1164 |
-
encoder_hidden_states=prompt_embeds,
|
1165 |
-
# cross_attention_kwargs=cross_attention_kwargs,
|
1166 |
-
added_cond_kwargs=added_cond_kwargs,
|
1167 |
-
return_dict=False,
|
1168 |
-
)[0]
|
1169 |
-
|
1170 |
-
# perform guidance
|
1171 |
-
if do_classifier_free_guidance:
|
1172 |
-
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2]
|
1173 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1174 |
-
|
1175 |
-
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1176 |
-
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1177 |
-
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1178 |
-
|
1179 |
-
# compute the previous noisy sample x_t -> x_t-1
|
1180 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1181 |
-
|
1182 |
-
# # step callback
|
1183 |
-
# latents = self.controller.step_callback(latents)
|
1184 |
-
if t == 1 and use_md_prompt:
|
1185 |
-
# show_cross_attention(tokenizer=self.tokenizer, prompts=[prompt], attention_store=self.controller, res=self.attn_res[0], from_where=["up","down"], select=0, t=int(t))
|
1186 |
-
md_prompts, views_attention = get_multidiffusion_prompts(tokenizer=self.tokenizer, prompts=[prompt], threthod=c,attention_store=self.controller, height=height//scale_num, width =width//scale_num, from_where=["up","down"], random_jitter=True, scale_num=scale_num)
|
1187 |
-
|
1188 |
-
# call the callback, if provided
|
1189 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1190 |
-
progress_bar.update()
|
1191 |
-
if callback is not None and i % callback_steps == 0:
|
1192 |
-
step_idx = i // getattr(self.scheduler, "order", 1)
|
1193 |
-
callback(step_idx, t, latents)
|
1194 |
-
|
1195 |
-
del latents_for_view, latent_model_input, noise_pred, noise_pred_text, noise_pred_uncond
|
1196 |
-
if use_md_prompt or save_attention_map:
|
1197 |
-
self.recover_attention_control(ori_attn_processors=ori_attn_processors) # recover attention controller
|
1198 |
-
del self.controller
|
1199 |
-
torch.cuda.empty_cache()
|
1200 |
-
else:
|
1201 |
-
print("### Encoding Real Image ###")
|
1202 |
-
latents = self.vae.encode(image_lr)
|
1203 |
-
latents = latents.latent_dist.sample() * self.vae.config.scaling_factor
|
1204 |
-
|
1205 |
-
anchor_mean = latents.mean()
|
1206 |
-
anchor_std = latents.std()
|
1207 |
-
if self.lowvram:
|
1208 |
-
latents = latents.cpu()
|
1209 |
-
torch.cuda.empty_cache()
|
1210 |
-
if not output_type == "latent":
|
1211 |
-
# make sure the VAE is in float32 mode, as it overflows in float16
|
1212 |
-
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1213 |
-
|
1214 |
-
if self.lowvram:
|
1215 |
-
needs_upcasting = False # use madebyollin/sdxl-vae-fp16-fix in lowvram mode!
|
1216 |
-
self.unet.cpu()
|
1217 |
-
self.vae.to(device)
|
1218 |
-
|
1219 |
-
if needs_upcasting:
|
1220 |
-
self.upcast_vae()
|
1221 |
-
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1222 |
-
if self.lowvram and multi_decoder:
|
1223 |
-
current_width_height = self.unet.config.sample_size * self.vae_scale_factor
|
1224 |
-
image = self.tiled_decode(latents, current_width_height, current_width_height)
|
1225 |
-
else:
|
1226 |
-
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1227 |
-
# cast back to fp16 if needed
|
1228 |
-
if needs_upcasting:
|
1229 |
-
self.vae.to(dtype=torch.float16)
|
1230 |
-
torch.cuda.empty_cache()
|
1231 |
-
|
1232 |
-
image = self.image_processor.postprocess(image, output_type=output_type)
|
1233 |
-
if not os.path.exists(f'{result_path}'):
|
1234 |
-
os.makedirs(f'{result_path}')
|
1235 |
-
|
1236 |
-
image_lr_save_path = f'{result_path}/{image[0].size[0]}_{image[0].size[1]}.png'
|
1237 |
-
image[0].save(image_lr_save_path)
|
1238 |
-
output_images.append(image[0])
|
1239 |
-
|
1240 |
-
####################################################### Phase Upscaling #####################################################
|
1241 |
-
if use_progressive_upscaling:
|
1242 |
-
if image_lr == None:
|
1243 |
-
starting_scale = 2
|
1244 |
-
else:
|
1245 |
-
starting_scale = 1
|
1246 |
-
else:
|
1247 |
-
starting_scale = scale_num
|
1248 |
-
|
1249 |
-
for current_scale_num in range(starting_scale, scale_num + 1):
|
1250 |
-
if self.lowvram:
|
1251 |
-
latents = latents.to(device)
|
1252 |
-
self.unet.to(device)
|
1253 |
-
torch.cuda.empty_cache()
|
1254 |
-
|
1255 |
-
current_height = self.unet.config.sample_size * self.vae_scale_factor * current_scale_num
|
1256 |
-
current_width = self.unet.config.sample_size * self.vae_scale_factor * current_scale_num
|
1257 |
-
|
1258 |
-
if height > width:
|
1259 |
-
current_width = int(current_width * aspect_ratio)
|
1260 |
-
else:
|
1261 |
-
current_height = int(current_height * aspect_ratio)
|
1262 |
-
|
1263 |
-
|
1264 |
-
if upscale_mode == "bicubic_latent" or debug:
|
1265 |
-
latents = F.interpolate(latents.to(device), size=(int(current_height / self.vae_scale_factor), int(current_width / self.vae_scale_factor)), mode='bicubic')
|
1266 |
-
else:
|
1267 |
-
raise NotImplementedError
|
1268 |
-
|
1269 |
-
print("### Phase {} Denoising ###".format(current_scale_num))
|
1270 |
-
############################################# noise inverse #############################################
|
1271 |
-
noise_latents = []
|
1272 |
-
noise = torch.randn_like(latents)
|
1273 |
-
for timestep in timesteps:
|
1274 |
-
noise_latent = self.scheduler.add_noise(latents, noise, timestep.unsqueeze(0))
|
1275 |
-
noise_latents.append(noise_latent)
|
1276 |
-
latents = noise_latents[0]
|
1277 |
|
1278 |
-
|
1279 |
-
|
1280 |
-
for i, t in enumerate(timesteps):
|
1281 |
-
count = torch.zeros_like(latents)
|
1282 |
-
value = torch.zeros_like(latents)
|
1283 |
-
cosine_factor = 0.5 * (1 + torch.cos(torch.pi * (self.scheduler.config.num_train_timesteps - t) / self.scheduler.config.num_train_timesteps)).cpu()
|
1284 |
-
if use_skip_residual:
|
1285 |
-
c1 = cosine_factor ** cosine_scale_1
|
1286 |
-
latents = latents * (1 - c1) + noise_latents[i] * c1
|
1287 |
-
|
1288 |
-
if use_multidiffusion:
|
1289 |
-
############################################# MultiDiffusion #############################################
|
1290 |
-
if use_md_prompt:
|
1291 |
-
md_prompt_embeds_list = []
|
1292 |
-
md_add_text_embeds_list = []
|
1293 |
-
for md_prompt in md_prompts[current_scale_num]:
|
1294 |
-
(
|
1295 |
-
md_prompt_embeds,
|
1296 |
-
md_negative_prompt_embeds,
|
1297 |
-
md_pooled_prompt_embeds,
|
1298 |
-
md_negative_pooled_prompt_embeds,
|
1299 |
-
) = self.encode_prompt(
|
1300 |
-
prompt=md_prompt,
|
1301 |
-
prompt_2=prompt_2,
|
1302 |
-
device=device,
|
1303 |
-
num_images_per_prompt=num_images_per_prompt,
|
1304 |
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1305 |
-
negative_prompt=negative_prompt,
|
1306 |
-
negative_prompt_2=negative_prompt_2,
|
1307 |
-
prompt_embeds=None,
|
1308 |
-
negative_prompt_embeds=None,
|
1309 |
-
pooled_prompt_embeds=None,
|
1310 |
-
negative_pooled_prompt_embeds=None,
|
1311 |
-
lora_scale=text_encoder_lora_scale,
|
1312 |
-
)
|
1313 |
-
md_prompt_embeds_list.append(torch.cat([md_negative_prompt_embeds, md_prompt_embeds], dim=0).to(device))
|
1314 |
-
md_add_text_embeds_list.append(torch.cat([md_negative_pooled_prompt_embeds, md_pooled_prompt_embeds], dim=0).to(device))
|
1315 |
-
del md_negative_prompt_embeds, md_negative_pooled_prompt_embeds
|
1316 |
-
|
1317 |
-
if use_md_prompt:
|
1318 |
-
random_jitter = True
|
1319 |
-
views = [(h_start*4, h_end*4, w_start*4, w_end*4) for h_start, h_end, w_start, w_end in views_attention[current_scale_num]]
|
1320 |
-
else:
|
1321 |
-
random_jitter = True
|
1322 |
-
views = self.get_views(current_height, current_width, stride=stride, window_size=self.unet.config.sample_size, random_jitter=random_jitter)
|
1323 |
-
|
1324 |
-
views_batch = [views[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
|
1325 |
-
|
1326 |
-
if use_md_prompt:
|
1327 |
-
views_prompt_embeds_input = [md_prompt_embeds_list[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
|
1328 |
-
views_add_text_embeds_input = [md_add_text_embeds_list[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
|
1329 |
-
|
1330 |
-
if random_jitter:
|
1331 |
-
jitter_range = int((self.unet.config.sample_size - stride) // 4)
|
1332 |
-
latents_ = F.pad(latents, (jitter_range, jitter_range, jitter_range, jitter_range), 'constant', 0)
|
1333 |
-
else:
|
1334 |
-
latents_ = latents
|
1335 |
-
|
1336 |
-
count_local = torch.zeros_like(latents_)
|
1337 |
-
value_local = torch.zeros_like(latents_)
|
1338 |
-
|
1339 |
-
for j, batch_view in enumerate(views_batch):
|
1340 |
-
vb_size = len(batch_view)
|
1341 |
-
# get the latents corresponding to the current view coordinates
|
1342 |
-
latents_for_view = torch.cat(
|
1343 |
-
[
|
1344 |
-
latents_[:, :, h_start:h_end, w_start:w_end]
|
1345 |
-
for h_start, h_end, w_start, w_end in batch_view
|
1346 |
-
]
|
1347 |
-
)
|
1348 |
-
|
1349 |
-
# expand the latents if we are doing classifier free guidance
|
1350 |
-
latent_model_input = latents_for_view
|
1351 |
-
latent_model_input = (
|
1352 |
-
latent_model_input.repeat_interleave(2, dim=0)
|
1353 |
-
if do_classifier_free_guidance
|
1354 |
-
else latent_model_input
|
1355 |
-
)
|
1356 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1357 |
-
|
1358 |
-
add_time_ids_input = []
|
1359 |
-
for h_start, h_end, w_start, w_end in batch_view:
|
1360 |
-
add_time_ids_ = add_time_ids.clone()
|
1361 |
-
add_time_ids_[:, 2] = h_start * self.vae_scale_factor
|
1362 |
-
add_time_ids_[:, 3] = w_start * self.vae_scale_factor
|
1363 |
-
add_time_ids_input.append(add_time_ids_)
|
1364 |
-
add_time_ids_input = torch.cat(add_time_ids_input)
|
1365 |
-
|
1366 |
-
if not use_md_prompt:
|
1367 |
-
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size)
|
1368 |
-
add_text_embeds_input = torch.cat([add_text_embeds] * vb_size)
|
1369 |
-
# predict the noise residual
|
1370 |
-
added_cond_kwargs = {"text_embeds": add_text_embeds_input, "time_ids": add_time_ids_input}
|
1371 |
-
noise_pred = self.unet(
|
1372 |
-
latent_model_input,
|
1373 |
-
t,
|
1374 |
-
encoder_hidden_states=prompt_embeds_input,
|
1375 |
-
# cross_attention_kwargs=cross_attention_kwargs,
|
1376 |
-
added_cond_kwargs=added_cond_kwargs,
|
1377 |
-
return_dict=False,
|
1378 |
-
)[0]
|
1379 |
-
else:
|
1380 |
-
md_prompt_embeds_input = torch.cat(views_prompt_embeds_input[j])
|
1381 |
-
md_add_text_embeds_input = torch.cat(views_add_text_embeds_input[j])
|
1382 |
-
md_added_cond_kwargs = {"text_embeds": md_add_text_embeds_input, "time_ids": add_time_ids_input}
|
1383 |
-
noise_pred = self.unet(
|
1384 |
-
latent_model_input,
|
1385 |
-
t,
|
1386 |
-
encoder_hidden_states=md_prompt_embeds_input,
|
1387 |
-
# cross_attention_kwargs=cross_attention_kwargs,
|
1388 |
-
added_cond_kwargs=md_added_cond_kwargs,
|
1389 |
-
return_dict=False,
|
1390 |
-
)[0]
|
1391 |
-
|
1392 |
-
if do_classifier_free_guidance:
|
1393 |
-
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2]
|
1394 |
-
noise_pred = noise_pred_uncond + multi_guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1395 |
-
|
1396 |
-
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1397 |
-
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1398 |
-
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1399 |
-
|
1400 |
-
# compute the previous noisy sample x_t -> x_t-1
|
1401 |
-
self.scheduler._init_step_index(t)
|
1402 |
-
latents_denoised_batch = self.scheduler.step(
|
1403 |
-
noise_pred, t, latents_for_view, **extra_step_kwargs, return_dict=False)[0]
|
1404 |
-
|
1405 |
-
# extract value from batch
|
1406 |
-
for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip(
|
1407 |
-
latents_denoised_batch.chunk(vb_size), batch_view
|
1408 |
-
):
|
1409 |
-
value_local[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised
|
1410 |
-
count_local[:, :, h_start:h_end, w_start:w_end] += 1
|
1411 |
-
|
1412 |
-
if random_jitter:
|
1413 |
-
value_local = value_local[: ,:, jitter_range: jitter_range + current_height // self.vae_scale_factor, jitter_range: jitter_range + current_width // self.vae_scale_factor]
|
1414 |
-
count_local = count_local[: ,:, jitter_range: jitter_range + current_height // self.vae_scale_factor, jitter_range: jitter_range + current_width // self.vae_scale_factor]
|
1415 |
-
|
1416 |
-
if i != (len(timesteps) - 1):
|
1417 |
-
noise_index = i + 1
|
1418 |
-
else:
|
1419 |
-
noise_index = i
|
1420 |
-
|
1421 |
-
value_local = torch.where(count_local == 0, noise_latents[noise_index], value_local)
|
1422 |
-
count_local = torch.where(count_local == 0, torch.ones_like(count_local), count_local)
|
1423 |
-
if use_dilated_sampling:
|
1424 |
-
c2 = cosine_factor ** cosine_scale_2
|
1425 |
-
value += value_local / count_local * (1 - c2)
|
1426 |
-
count += torch.ones_like(value_local) * (1 - c2)
|
1427 |
-
else:
|
1428 |
-
value += value_local / count_local
|
1429 |
-
count += torch.ones_like(value_local)
|
1430 |
-
|
1431 |
-
if use_dilated_sampling:
|
1432 |
-
############################################# Dilated Sampling #############################################
|
1433 |
-
views = [[h, w] for h in range(current_scale_num) for w in range(current_scale_num)]
|
1434 |
-
views_batch = [views[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
|
1435 |
-
|
1436 |
-
h_pad = (current_scale_num - (latents.size(2) % current_scale_num)) % current_scale_num
|
1437 |
-
w_pad = (current_scale_num - (latents.size(3) % current_scale_num)) % current_scale_num
|
1438 |
-
latents_ = F.pad(latents, (w_pad, 0, h_pad, 0), 'constant', 0)
|
1439 |
-
|
1440 |
-
count_global = torch.zeros_like(latents_)
|
1441 |
-
value_global = torch.zeros_like(latents_)
|
1442 |
-
|
1443 |
-
if use_guassian:
|
1444 |
-
c3 = 0.99 * cosine_factor ** cosine_scale_3 + 1e-2
|
1445 |
-
std_, mean_ = latents_.std(), latents_.mean()
|
1446 |
-
latents_gaussian = gaussian_filter(latents_, kernel_size=(2*current_scale_num-1), sigma=sigma*c3)
|
1447 |
-
latents_gaussian = (latents_gaussian - latents_gaussian.mean()) / latents_gaussian.std() * std_ + mean_
|
1448 |
-
else:
|
1449 |
-
latents_gaussian = latents_
|
1450 |
-
|
1451 |
-
for j, batch_view in enumerate(views_batch):
|
1452 |
-
|
1453 |
-
latents_for_view = torch.cat(
|
1454 |
-
[
|
1455 |
-
latents_[:, :, h::current_scale_num, w::current_scale_num]
|
1456 |
-
for h, w in batch_view
|
1457 |
-
]
|
1458 |
-
)
|
1459 |
-
|
1460 |
-
latents_for_view_gaussian = torch.cat(
|
1461 |
-
[
|
1462 |
-
latents_gaussian[:, :, h::current_scale_num, w::current_scale_num]
|
1463 |
-
for h, w in batch_view
|
1464 |
-
]
|
1465 |
-
)
|
1466 |
-
|
1467 |
-
if shuffle:
|
1468 |
-
######## window interaction ########
|
1469 |
-
shape = latents_for_view.shape
|
1470 |
-
shuffle_index = torch.stack([torch.randperm(shape[0]) for _ in range(latents_for_view.reshape(-1).shape[0]//shape[0])])
|
1471 |
-
|
1472 |
-
shuffle_index = shuffle_index.view(shape[1],shape[2],shape[3],shape[0])
|
1473 |
-
original_index = torch.zeros_like(shuffle_index).scatter_(3, shuffle_index, torch.arange(shape[0]).repeat(shape[1], shape[2], shape[3], 1))
|
1474 |
-
|
1475 |
-
shuffle_index = shuffle_index.permute(3,0,1,2).to(device)
|
1476 |
-
original_index = original_index.permute(3,0,1,2).to(device)
|
1477 |
-
latents_for_view_gaussian = latents_for_view_gaussian.gather(0, shuffle_index)
|
1478 |
-
|
1479 |
-
vb_size = latents_for_view.size(0)
|
1480 |
-
|
1481 |
-
# expand the latents if we are doing classifier free guidance
|
1482 |
-
latent_model_input = latents_for_view_gaussian
|
1483 |
-
latent_model_input = (
|
1484 |
-
latent_model_input.repeat_interleave(2, dim=0)
|
1485 |
-
if do_classifier_free_guidance
|
1486 |
-
else latent_model_input
|
1487 |
-
)
|
1488 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1489 |
-
|
1490 |
-
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size)
|
1491 |
-
add_text_embeds_input = torch.cat([add_text_embeds] * vb_size)
|
1492 |
-
add_time_ids_input = torch.cat([add_time_ids] * vb_size)
|
1493 |
-
|
1494 |
-
# predict the noise residual
|
1495 |
-
added_cond_kwargs = {"text_embeds": add_text_embeds_input, "time_ids": add_time_ids_input}
|
1496 |
-
noise_pred = self.unet(
|
1497 |
-
latent_model_input,
|
1498 |
-
t,
|
1499 |
-
encoder_hidden_states=prompt_embeds_input,
|
1500 |
-
# cross_attention_kwargs=cross_attention_kwargs,
|
1501 |
-
added_cond_kwargs=added_cond_kwargs,
|
1502 |
-
return_dict=False,
|
1503 |
-
)[0]
|
1504 |
-
|
1505 |
-
if do_classifier_free_guidance:
|
1506 |
-
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2]
|
1507 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1508 |
-
|
1509 |
-
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1510 |
-
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1511 |
-
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1512 |
-
|
1513 |
-
if shuffle:
|
1514 |
-
## recover
|
1515 |
-
noise_pred = noise_pred.gather(0, original_index)
|
1516 |
-
|
1517 |
-
# compute the previous noisy sample x_t -> x_t-1
|
1518 |
-
self.scheduler._init_step_index(t)
|
1519 |
-
latents_denoised_batch = self.scheduler.step(noise_pred, t, latents_for_view, **extra_step_kwargs, return_dict=False)[0]
|
1520 |
-
|
1521 |
-
# extract value from batch
|
1522 |
-
for latents_view_denoised, (h, w) in zip(
|
1523 |
-
latents_denoised_batch.chunk(vb_size), batch_view
|
1524 |
-
):
|
1525 |
-
value_global[:, :, h::current_scale_num, w::current_scale_num] += latents_view_denoised
|
1526 |
-
count_global[:, :, h::current_scale_num, w::current_scale_num] += 1
|
1527 |
-
|
1528 |
-
value_global = value_global[: ,:, h_pad:, w_pad:]
|
1529 |
-
|
1530 |
-
if use_multidiffusion:
|
1531 |
-
c2 = cosine_factor ** cosine_scale_2
|
1532 |
-
value += value_global * c2
|
1533 |
-
count += torch.ones_like(value_global) * c2
|
1534 |
-
else:
|
1535 |
-
value += value_global
|
1536 |
-
count += torch.ones_like(value_global)
|
1537 |
-
|
1538 |
-
latents = torch.where(count > 0, value / count, value)
|
1539 |
-
|
1540 |
-
# call the callback, if provided
|
1541 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1542 |
-
progress_bar.update()
|
1543 |
-
if callback is not None and i % callback_steps == 0:
|
1544 |
-
step_idx = i // getattr(self.scheduler, "order", 1)
|
1545 |
-
callback(step_idx, t, latents)
|
1546 |
-
|
1547 |
-
#########################################################################################################################################
|
1548 |
-
|
1549 |
-
latents = (latents - latents.mean()) / latents.std() * anchor_std + anchor_mean
|
1550 |
-
if self.lowvram:
|
1551 |
-
latents = latents.cpu()
|
1552 |
-
torch.cuda.empty_cache()
|
1553 |
-
if not output_type == "latent":
|
1554 |
-
# make sure the VAE is in float32 mode, as it overflows in float16
|
1555 |
-
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1556 |
-
if self.lowvram:
|
1557 |
-
needs_upcasting = False # use madebyollin/sdxl-vae-fp16-fix in lowvram mode!
|
1558 |
-
self.unet.cpu()
|
1559 |
-
self.vae.to(device)
|
1560 |
-
|
1561 |
-
if needs_upcasting:
|
1562 |
-
self.upcast_vae()
|
1563 |
-
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1564 |
-
|
1565 |
-
print("### Phase {} Decoding ###".format(current_scale_num))
|
1566 |
-
if current_height > 2048 or current_width > 2048:
|
1567 |
-
# image = self.tiled_decode(latents, current_height, current_width)
|
1568 |
-
self.enable_vae_tiling()
|
1569 |
-
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1570 |
-
else:
|
1571 |
-
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1572 |
-
|
1573 |
-
|
1574 |
-
image = self.image_processor.postprocess(image, output_type=output_type)
|
1575 |
-
image[0].save(f'{result_path}/AccDiffusion_{current_scale_num}.png')
|
1576 |
-
output_images.append(image[0])
|
1577 |
-
|
1578 |
-
# cast back to fp16 if needed
|
1579 |
-
if needs_upcasting:
|
1580 |
-
self.vae.to(dtype=torch.float16)
|
1581 |
-
else:
|
1582 |
-
image = latents
|
1583 |
-
|
1584 |
-
# Offload all models
|
1585 |
-
self.maybe_free_model_hooks()
|
1586 |
|
|
|
1587 |
return output_images
|
1588 |
|
1589 |
|
1590 |
if __name__ == "__main__":
|
1591 |
parser = argparse.ArgumentParser()
|
1592 |
### AccDiffusion PARAMETERS ###
|
1593 |
-
parser.add_argument('--model_ckpt',default='stabilityai/stable-diffusion-xl-base-1.0')
|
1594 |
parser.add_argument('--seed', type=int, default=42)
|
1595 |
parser.add_argument('--prompt', default="Astronaut on Mars During sunset.")
|
1596 |
parser.add_argument('--negative_prompt', default="blurry, ugly, duplicate, poorly drawn, deformed, mosaic")
|
@@ -1620,112 +260,139 @@ if __name__ == "__main__":
|
|
1620 |
|
1621 |
args = parser.parse_args()
|
1622 |
|
1623 |
-
#
|
1624 |
pipe = AccDiffusionSDXLPipeline.from_pretrained(args.model_ckpt, torch_dtype=torch.float16).to("cuda")
|
1625 |
|
1626 |
|
1627 |
-
# GRADIO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1628 |
|
1629 |
@spaces.GPU(duration=200)
|
1630 |
def infer(prompt, resolution, num_inference_steps, guidance_scale, seed, use_multidiffusion, use_skip_residual, use_dilated_sampling, use_progressive_upscaling, shuffle, use_md_prompt, progress=gr.Progress(track_tqdm=True)):
|
1631 |
set_seed(seed)
|
1632 |
-
width,height = list(map(int, resolution.split(',')))
|
1633 |
cross_attention_kwargs = {"edit_type": "visualize",
|
1634 |
"n_self_replace": 0.4,
|
1635 |
"n_cross_replace": {"default_": 1.0, "confetti": 0.8},
|
1636 |
}
|
1637 |
-
|
1638 |
-
generator = torch.Generator(device='cuda')
|
1639 |
-
generator = generator.manual_seed(seed)
|
1640 |
|
1641 |
print(f"Prompt: {prompt}")
|
1642 |
md5_hash = hashlib.md5(prompt.encode()).hexdigest()
|
1643 |
result_path = f"./output/{args.experiment_name}/{md5_hash}/{width}_{height}_{seed}/"
|
1644 |
|
1645 |
-
images = pipe(
|
1646 |
-
|
1647 |
-
|
1648 |
-
|
1649 |
-
|
1650 |
-
|
1651 |
-
|
1652 |
-
|
1653 |
-
|
1654 |
-
|
1655 |
-
|
1656 |
-
|
1657 |
-
|
1658 |
-
|
1659 |
-
|
1660 |
-
|
1661 |
-
|
1662 |
-
|
1663 |
-
|
1664 |
-
|
1665 |
-
|
1666 |
-
|
1667 |
-
|
1668 |
-
|
1669 |
-
|
|
|
|
|
|
|
|
|
|
|
1670 |
print(images)
|
1671 |
|
1672 |
return images
|
1673 |
-
|
1674 |
|
1675 |
|
1676 |
MAX_SEED = np.iinfo(np.int32).max
|
1677 |
|
1678 |
-
|
1679 |
-
css = """
|
1680 |
-
footer {
|
1681 |
-
visibility: hidden;
|
1682 |
-
}
|
1683 |
-
"""
|
1684 |
-
|
1685 |
-
|
1686 |
-
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
1687 |
with gr.Column(elem_id="col-container"):
|
1688 |
-
|
1689 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1690 |
with gr.Row():
|
1691 |
-
|
1692 |
-
|
1693 |
-
|
1694 |
-
|
1695 |
-
|
1696 |
-
|
1697 |
-
|
1698 |
-
|
1699 |
-
|
1700 |
-
|
1701 |
-
|
1702 |
-
)
|
1703 |
-
|
1704 |
-
|
1705 |
-
|
1706 |
-
|
1707 |
-
|
1708 |
-
|
1709 |
-
|
1710 |
-
|
1711 |
-
shuffle = gr.Checkbox(label="shuffle", value=False)
|
1712 |
-
use_md_prompt = gr.Checkbox(label="use_md_prompt", value=False)
|
1713 |
|
1714 |
-
output_images = gr.Gallery(label="Output
|
|
|
1715 |
gr.Examples(
|
1716 |
-
examples
|
1717 |
-
["
|
1718 |
-
["
|
1719 |
-
["A
|
|
|
|
|
|
|
1720 |
],
|
1721 |
-
inputs
|
|
|
1722 |
)
|
1723 |
submit_btn.click(
|
1724 |
-
fn
|
1725 |
-
inputs
|
1726 |
-
|
1727 |
-
outputs
|
1728 |
show_api=False
|
1729 |
)
|
1730 |
demo.launch(show_api=False, show_error=True)
|
1731 |
-
|
|
|
79 |
```
|
80 |
"""
|
81 |
|
|
|
|
|
82 |
def gaussian_kernel(kernel_size=3, sigma=1.0, channels=3):
|
83 |
x_coord = torch.arange(kernel_size)
|
84 |
gaussian_1d = torch.exp(-(x_coord - (kernel_size - 1) / 2) ** 2 / (2 * sigma ** 2))
|
|
|
113 |
"""
|
114 |
Pipeline for text-to-image generation using Stable Diffusion XL.
|
115 |
|
116 |
+
[ํด๋์ค ์ค๋ช
์๋ต โฆ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
"""
|
118 |
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
119 |
|
|
|
152 |
else:
|
153 |
self.watermark = None
|
154 |
|
155 |
+
# (์ดํ ๊ธฐ์กด ๋ฉ์๋๋ค ์๋ต โฆ)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
@torch.no_grad()
|
158 |
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
|
214 |
c : Optional[float] = 0.3,
|
215 |
):
|
216 |
r"""
|
217 |
+
[ํจ๏ฟฝ๏ฟฝ ์ค๋ช
์๋ต โฆ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
"""
|
219 |
+
# (์ฌ๊ธฐ์๋ ๊ธฐ์กด __call__ ํจ์ ๋ด๋ถ ๊ตฌํ์ ๊ทธ๋๋ก ์ ์งํฉ๋๋ค.)
|
220 |
+
# ... (์ค๋ต)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
output_images = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
+
###################################################### Phase Initialization ########################################################
|
224 |
+
# (์ค๋ต) ์ค์ denoising ๋ฐ upscaling ๋ถ๋ถ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
+
# ๋ง์ง๋ง์ ์ด๋ฏธ์ง ์ ์ฅ ๋ฐ ๋ฐํ
|
227 |
return output_images
|
228 |
|
229 |
|
230 |
if __name__ == "__main__":
|
231 |
parser = argparse.ArgumentParser()
|
232 |
### AccDiffusion PARAMETERS ###
|
233 |
+
parser.add_argument('--model_ckpt', default='stabilityai/stable-diffusion-xl-base-1.0')
|
234 |
parser.add_argument('--seed', type=int, default=42)
|
235 |
parser.add_argument('--prompt', default="Astronaut on Mars During sunset.")
|
236 |
parser.add_argument('--negative_prompt', default="blurry, ugly, duplicate, poorly drawn, deformed, mosaic")
|
|
|
260 |
|
261 |
args = parser.parse_args()
|
262 |
|
263 |
+
# ํ์ดํ๋ผ์ธ ๋ถ๋ฌ์ค๊ธฐ (ํ์ํ ๋ชจ๋ธ ์ฒดํฌํฌ์ธํธ ์ฌ์ฉ)
|
264 |
pipe = AccDiffusionSDXLPipeline.from_pretrained(args.model_ckpt, torch_dtype=torch.float16).to("cuda")
|
265 |
|
266 |
|
267 |
+
# ----------------------- GRADIO INTERFACE (๊ฐ์ ๋ UI) -----------------------
|
268 |
+
|
269 |
+
# ์ฌ์ฉ์ ์ธํฐํ์ด์ค์ ์ ์ฉํ CSS (๋ฐฐ๊ฒฝ, ํฐํธ, ์นด๋ ์คํ์ผ ๋ฑ)
|
270 |
+
css = """
|
271 |
+
body {
|
272 |
+
background: linear-gradient(135deg, #2c3e50, #4ca1af);
|
273 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
274 |
+
color: #ffffff;
|
275 |
+
}
|
276 |
+
#col-container {
|
277 |
+
margin: 20px auto;
|
278 |
+
padding: 20px;
|
279 |
+
max-width: 900px;
|
280 |
+
background-color: rgba(0, 0, 0, 0.5);
|
281 |
+
border-radius: 12px;
|
282 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.5);
|
283 |
+
}
|
284 |
+
h1, h2 {
|
285 |
+
text-align: center;
|
286 |
+
margin-bottom: 10px;
|
287 |
+
}
|
288 |
+
footer {
|
289 |
+
visibility: hidden;
|
290 |
+
}
|
291 |
+
"""
|
292 |
|
293 |
@spaces.GPU(duration=200)
|
294 |
def infer(prompt, resolution, num_inference_steps, guidance_scale, seed, use_multidiffusion, use_skip_residual, use_dilated_sampling, use_progressive_upscaling, shuffle, use_md_prompt, progress=gr.Progress(track_tqdm=True)):
|
295 |
set_seed(seed)
|
296 |
+
width, height = list(map(int, resolution.split(',')))
|
297 |
cross_attention_kwargs = {"edit_type": "visualize",
|
298 |
"n_self_replace": 0.4,
|
299 |
"n_cross_replace": {"default_": 1.0, "confetti": 0.8},
|
300 |
}
|
301 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
|
|
302 |
|
303 |
print(f"Prompt: {prompt}")
|
304 |
md5_hash = hashlib.md5(prompt.encode()).hexdigest()
|
305 |
result_path = f"./output/{args.experiment_name}/{md5_hash}/{width}_{height}_{seed}/"
|
306 |
|
307 |
+
images = pipe(
|
308 |
+
prompt,
|
309 |
+
negative_prompt=args.negative_prompt,
|
310 |
+
generator=generator,
|
311 |
+
width=width,
|
312 |
+
height=height,
|
313 |
+
view_batch_size=args.view_batch_size,
|
314 |
+
stride=args.stride,
|
315 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
316 |
+
num_inference_steps=num_inference_steps,
|
317 |
+
guidance_scale=guidance_scale,
|
318 |
+
multi_guidance_scale=args.multi_guidance_scale,
|
319 |
+
cosine_scale_1=args.cosine_scale_1,
|
320 |
+
cosine_scale_2=args.cosine_scale_2,
|
321 |
+
cosine_scale_3=args.cosine_scale_3,
|
322 |
+
sigma=args.sigma,
|
323 |
+
use_guassian=args.use_guassian,
|
324 |
+
multi_decoder=args.multi_decoder,
|
325 |
+
upscale_mode=args.upscale_mode,
|
326 |
+
use_multidiffusion=use_multidiffusion,
|
327 |
+
use_skip_residual=use_skip_residual,
|
328 |
+
use_progressive_upscaling=use_progressive_upscaling,
|
329 |
+
use_dilated_sampling=use_dilated_sampling,
|
330 |
+
shuffle=shuffle,
|
331 |
+
result_path=result_path,
|
332 |
+
debug=args.debug,
|
333 |
+
save_attention_map=args.save_attention_map,
|
334 |
+
use_md_prompt=use_md_prompt,
|
335 |
+
c=args.c
|
336 |
+
)
|
337 |
print(images)
|
338 |
|
339 |
return images
|
|
|
340 |
|
341 |
|
342 |
MAX_SEED = np.iinfo(np.int32).max
|
343 |
|
344 |
+
with gr.Blocks(css=css) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
with gr.Column(elem_id="col-container"):
|
346 |
+
gr.Markdown("<h1>AccDiffusion: Advanced AI Art Generator</h1>")
|
347 |
+
gr.Markdown(
|
348 |
+
"์์ฑํ ์ด๋ฏธ์ง๋ฅผ ์ํ ์ฐฝ์์ ์ธ ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์. ์ด ๋ชจ๋ธ์ ์ต์ AccDiffusion ๊ธฐ๋ฒ์ ์ ์ฉํ์ฌ ๋ค์ํ ์คํ์ผ๊ณผ ํด์๋์ ์์ ์ํ์ ๋ง๋ค์ด๋
๋๋ค."
|
349 |
+
)
|
350 |
+
with gr.Row():
|
351 |
+
prompt = gr.Textbox(label="Prompt", placeholder="์: A surreal landscape with floating islands and vibrant colors.", lines=2, scale=4)
|
352 |
+
submit_btn = gr.Button("Generate", scale=1)
|
353 |
+
|
354 |
+
with gr.Accordion("Advanced Settings", open=False):
|
355 |
with gr.Row():
|
356 |
+
resolution = gr.Radio(
|
357 |
+
label="Resolution",
|
358 |
+
choices=[
|
359 |
+
"1024,1024", "2048,2048", "2048,1024", "1536,3072", "3072,3072", "4096,4096", "4096,2048"
|
360 |
+
],
|
361 |
+
value="1024,1024",
|
362 |
+
interactive=True
|
363 |
+
)
|
364 |
+
with gr.Column():
|
365 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=50, step=1, value=30, info="Number of denoising steps")
|
366 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=510, step=0.1, value=7.5, info="Higher values increase adherence to the prompt")
|
367 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, info="Set a seed for reproducibility")
|
368 |
+
with gr.Row():
|
369 |
+
use_multidiffusion = gr.Checkbox(label="Use MultiDiffusion", value=True)
|
370 |
+
use_skip_residual = gr.Checkbox(label="Use Skip Residual", value=True)
|
371 |
+
use_dilated_sampling = gr.Checkbox(label="Use Dilated Sampling", value=True)
|
372 |
+
with gr.Row():
|
373 |
+
use_progressive_upscaling = gr.Checkbox(label="Use Progressive Upscaling", value=False)
|
374 |
+
shuffle = gr.Checkbox(label="Shuffle", value=False)
|
375 |
+
use_md_prompt = gr.Checkbox(label="Use MD Prompt", value=False)
|
|
|
|
|
376 |
|
377 |
+
output_images = gr.Gallery(label="Output Images", format="png").style(grid=[2], height="auto")
|
378 |
+
gr.Markdown("### Example Prompts")
|
379 |
gr.Examples(
|
380 |
+
examples=[
|
381 |
+
["A surreal landscape with floating islands and vibrant colors."],
|
382 |
+
["Cyberpunk cityscape at night with neon lights and futuristic architecture."],
|
383 |
+
["A majestic dragon soaring over a medieval castle amidst stormy skies."],
|
384 |
+
["Futuristic robot exploring an alien planet with mysterious flora."],
|
385 |
+
["Abstract geometric patterns in vivid, pulsating colors."],
|
386 |
+
["A mystical forest illuminated by bioluminescent plants under a starry sky."]
|
387 |
],
|
388 |
+
inputs=[prompt],
|
389 |
+
label="Click an example to populate the prompt box."
|
390 |
)
|
391 |
submit_btn.click(
|
392 |
+
fn=infer,
|
393 |
+
inputs=[prompt, resolution, num_inference_steps, guidance_scale, seed,
|
394 |
+
use_multidiffusion, use_skip_residual, use_dilated_sampling, use_progressive_upscaling, shuffle, use_md_prompt],
|
395 |
+
outputs=[output_images],
|
396 |
show_api=False
|
397 |
)
|
398 |
demo.launch(show_api=False, show_error=True)
|
|